59 research outputs found

    Dike intrusion and deformation during growth of the Half Dome pluton, Yosemite National Park, California

    Get PDF
    Meter-scale mapping of the Late Cretaceous Half Dome Granodiorite of the Tuolumne Intrusive Suite (TIS) near Tenaya Lake, Yosemite National Park, defines an intricate internal structure that reflects a combination of incremental pluton growth by diking and internal deformation as the pluton grew. At least four ages of dikes of layered granodiorite are defined by crosscutting relations. Because dikes thicker than 1 m invariably contain multiple cycles of layering that field relations indicate record multiple intrusive increments, dozens of discrete intrusive events are likely. The kinematic pattern of dilation across dikes, offset lithologic markers across dikes, shearing of mafic enclaves and magmatic layering, and folding of dikes defines a synintrusive bulk strain field characterized by E-W extension and N-S contraction, with net volume increase in the extension direction. The geometric and kinematic pattern of the deformation are consistent with current understanding of Late Cretaceous Cordilleran tectonics and suggest that regional tectonic dilation played a significant role in making upper-crustal space for the growing pluton. Narrow shear zones offset lithologic markers and produced extreme strains, yet no rock fabric is preserved in the zones. This indicates that late-magmatic to subsolidus recrystallization, previously inferred in the TIS based on textural and mineralogical observations, greatly modified rock textures and obscured both the intricate internal structure of the pluton and the importance of synemplacement deformation

    A more informative way to name plutonic rocks

    Get PDF
    The International Union of Geological Sciences (IUGS) system for rock classification, introduced more than 40 years ago, has served geologists well but suffers from the problem of dividing a continuum of rock compositions into arbitrary bins. As a result, closely related rocks can be given unrelated names (e.g., granodiorite and tonalite), and the names themselves, which were generally derived from the names of places or people, rarely contribute to understanding the processes that generate the diversity of igneous rocks. Here we propose a quantitative modification to the IUGS system that reduces the number of distinct names but more effectively communicates the inherent variability of plutonic rocks. The system recognizes that mapped plutonic rock units are characterized by recognizable textures and mineral assemblages, but that mineral proportions within those units can be highly variable. Adding quantitative data to rock names is an important step toward moving geologic field observations into quantitative digital form and preparing them for advanced data mining and analysis

    Aplite diking and infiltration: a differentiation mechanism restricted to plutonic rocks

    Get PDF
    The Half Dome Granodiorite in Yosemite National Park, California, contains multiple crosscutting generations of high-silica dikes that vary in texture but share the distinctive trace element characteristics of fine-grained aplite dikes of the region (e.g., low Y and middle REE). Dikes of the youngest generation are typical fine-grained, sugary aplites with sharp planar contacts, whereas progressively older dikes are increasingly coarse-grained. The oldest ghostly forms recognizable as dikes are similar in grain size to the host granodiorite and their contacts are irregular at the grain scale, making them easy to overlook in the field. Mineral compositions and microstructures of felsic dikes indicate that all dikes, including fine-grained aplite, have undergone significant recrystallization. We propose that older dikes were originally fine-grained aplites that, after emplacement, recrystallized together with the host to a typical granitic texture. Extraction, transport, and redistribution of aplitic melt by various mechanisms explains major and trace element variation in the pluton and likely was the dominant differentiation mechanism at the level of emplacement. This late-stage differentiation process can only occur in a largely crystallized host capable of sustaining tensile cracks, and therefore cannot play a role in the differentiation of volcanic rocks. Predicted geochemical effects of aplite redistribution are evident in trace-element geochemical patterns of Circum-Pacific plutonic rocks but are absent from corresponding volcanic rocks. This indicates that aplite infiltration may be an important and widespread late-stage process of pluton differentiation

    Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation?

    Get PDF
    Lithologic and magnetic-susceptibility mapping of the western Half Dome Granodiorite of the Tuolumne Intrusive Suite of California reveals seven km-scale lithologic cycles, each of which is bounded by a sharp west-dipping contact that is subparallel to the external contact of the pluton. Crosscutting relations indicate that the cycles become younger to the east. Each cycle is inferred to have been a zone of partial melt in which an eastern melt-depleted base grades westward to a melt-rich top now preserved as a leucocratic facies of the Half Dome Granodiorite. Sharp contacts between cycles may record freezing episodes when the rate of heat input into the growing pluton dropped below that required to maintain interstitial melt. Thus, the interstitial melt zone migrated with time and its size at any given time need not have differed greatly from the ~1km thickness of the cycles. Cycles occur on the outer, older margins of the suite, and disappear toward the interior, younger intrusions. Inward disappearance of cycles likely reflects thermal maturation of the system such that melt was continuously present until the final migration of the solidus through the intrusive suite. Although the cycles span the compositional range from granodiorite to leucogranite, trace-element trends preserved in the cycles differ dramatically from those of both the Tuolumne Intrusive Suite and other Cretaceous zoned plutons of the eastern Sierra Nevada batholith. We suggest that (1) the compositional variations of the intrusive suite and the batholith reflect a signal from the source of the magmas, and (2) the geochemistry within the km-scale cycles reflects in situ crystal/liquid separation

    Are plutons assembled over millions of years by amalgamation from small magma chambers?

    Get PDF
    Field and geochronologic evidence indicate that large and broadly homogeneous plutons can accumulate incrementally over millions of years. This contradicts the common assumption that plutons form from large, mobile bodies of magma. Incremental assembly is consistent with seismic results from active volcanic areas which rarely locate masses that contain more than 10% melt. At such a low melt fraction, a material is incapable of bulk flow as a liquid and perhaps should not even be termed magma. Volumes with higher melt fractions may be present in these areas if they are small, and this is consistent with geologic evidence for plutons growing in small increments. The large melt volumes required for eruption of large ignimbrites are rare and ephemeral, and links between these and emplacement of most plutons are open to doubt. We suggest that plutons may commonly form incrementally without ever existing as a large magma body. If so, then many widely accepted magma ascent and emplacement processes (e.g., diapirism and stoping) may be uncommon in nature, and many aspects of the petrochemical evolution of magmatic systems (e.g., in situ crystal fractionation and magma mixing) need to be reconsidered

    Strategic review of enhancements and culture-based fisheries

    Full text link
    Enhancements are interventions in the life cycle of common-pool aquatic resources. Enhancement technologies include culture-based fisheries, habitat modifications, fertilization, feeding and elimination of predators/competitors. Enhancements are estimated to yield about two million mt per year, mostly from culture-based fisheries in fresh waters where they account for some 20 percent of capture, or 10 percent of combined capture and culture production. Marine enhancements are still at an experimental stage, but some have reached commercial production. Enhancements use limited external feed and energy inputs, and can provide very high returns for labour and capital input. Moreover, enhancement initiatives can facilitate institutional change and a more active management of aquatic resources, leading to increased productivity, conservation and wider social benefits. Enhancements may help to maintain population abundance, community structure and ecosystem functioning in the face of heavy exploitation and/or environmental degradation. Negative environmental impacts may arise from ecological and genetic interactions between enhanced and wild stocks. Many enhancements have not realised their full potential because of a failure to address specific institutional, technological, management and research requirements emanating from two key characteristics. Firstly, enhancement involves investment in common-pool resources and can only be sustained under institutional arrangements that allow regulation of use and a flow of benefits to those who bear the costs of enhancement. Secondly, interventions are limited to certain aspects of the life cycle of stocks, and outcomes are strongly dependent on natural conditions beyond management control. Hence, management must be adapted to local conditions to be effective, and certain conditions may preclude successful enhancement altogether. Governments have a major role to play in facilitating enhancement initiatives through the establishment of conducive institutional arrangements, appropriate research support, and the management of environmental and other impacts on and from enhancements.<br /

    Atmospheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables

    Full text link
    We investigate the properties of an atmospheric channel for free space quantum communication with continuous polarization variables. In our prepare-and-measure setup, coherent polarization states are transmitted through an atmospheric quantum channel of 100m length on the roof of our institute's building. The signal states are measured by homodyne detection with the help of a local oscillator (LO) which propagates in the same spatial mode as the signal, orthogonally polarized to it. Thus the interference of signal and LO is excellent and atmospheric fluctuations are autocompensated. The LO also acts as spatial and spectral filter, which allows for unrestrained daylight operation. Important characteristics for our system are atmospheric channel influences that could cause polarization, intensity and position excess noise. Therefore we study these influences in detail. Our results indicate that the channel is suitable for our quantum communication system in most weather conditions.Comment: 6 pages, 4 figures, submitted to Applied Physics B following an invitation for the special issue "Selected Papers Presented at the 2009 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society

    ELEVATED PHENYLACETIC ACID LEVELS DO NOT CORRELATE WITH ADVERSE EVENTS IN PATIENTS WITH UREA CYCLE DISORDERS OR HEPATIC ENCEPHALOPATHY AND CAN BE PREDICTED BASED ON THE PLASMA PAA TO PAGN RATIO

    Get PDF
    Background Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100), both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥500 μg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. Methods The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients ≥2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. Results Only 0.2% (11) of 4683 samples exceeded 500 ug/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio > 2.5 (both in μg/mL) in a random blood draw identified patients at risk for PAA levels > 500 μg/ml. Conclusions The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker

    Efficient Reconstruction of Metabolic Pathways by Bidirectional Chemical Search

    Get PDF
    One of the main challenges in systems biology is the establishment of the metabolome: a catalogue of the metabolites and biochemical reactions present in a specific organism. Current knowledge of biochemical pathways as stored in public databases such as KEGG, is based on carefully curated genomic evidence for the presence of specific metabolites and enzymes that activate particular biochemical reactions. In this paper, we present an efficient method to build a substantial portion of the artificial chemistry defined by the metabolites and biochemical reactions in a given metabolic pathway, which is based on bidirectional chemical search. Computational results on the pathways stored in KEGG reveal novel biochemical pathways

    Effect of age, sex and gender on pain sensitivity: A narrative review

    Get PDF
    © 2017 Eltumi And Tashani. Introduction: An increasing body of literature on sex and gender differences in pain sensitivity has been accumulated in recent years. There is also evidence from epidemiological research that painful conditions are more prevalent in older people. The aim of this narrative review is to critically appraise the relevant literature investigating the presence of age and sex differences in clinical and experimental pain conditions. Methods: A scoping search of the literature identifying relevant peer reviewed articles was conducted on May 2016. Information and evidence from the key articles were narratively described and data was quantitatively synthesised to identify gaps of knowledge in the research literature concerning age and sex differences in pain responses. Results: This critical appraisal of the literature suggests that the results of the experimental and clinical studies regarding age and sex differences in pain contain some contradictions as far as age differences in pain are concerned. While data from the clinical studies are more consistent and seem to point towards the fact that chronic pain prevalence increases in the elderly findings from the experimental studies on the other hand were inconsistent, with pain threshold increasing with age in some studies and decreasing with age in others. Conclusion: There is a need for further research using the latest advanced quantitative sensory testing protocols to measure the function of small nerve fibres that are involved in nociception and pain sensitivity across the human life span. Implications: Findings from these studies should feed into and inform evidence emerging from other types of studies (e.g. brain imaging technique and psychometrics) suggesting that pain in the older humans may have unique characteristics that affect how old patients respond to intervention
    corecore