1,703 research outputs found

    Effect of Anionic Salt and Highly Fermentable Carbohydrate Supplementations on Urine pH and on Experimentally Induced Hypocalcaemia in Cows

    Get PDF
    The objective of this experiment was to determine the effect of dietary grain on calcium homeostasis. Six rumen-fistulated dairy cows with 3 or more previous lactations and no history of parturient paresis were randomly assigned to a sequence of diets in a crossover study with 4 periods of 10 days each. Dietary treatments were: A control ration consisting of wrap grass silage alone (1), the control ration supplemented with ammonium chloride and ammonium sulphate salt solution (2), control ration following a period with supplementation (3) and control ration supplemented with increasing amounts of barley from 4 to 10 kg/cow per day, expected to produce subclinical rumen acidosis (4). Daily intake of the diets was adjusted to 14 kg DM/cow per day. On day 11, the calcium-regulating mechanisms in cows were challenged until recumbency by a standardized intravenous EDTA infusion and cows were left to recover spontaneously. Anion supplementation and the feeding of highly fermentable carbohydrate lowered urine pH below 7.0 due to subclinical acidosis. During spontaneous recovery from EDTA induced hypocalcaemia, the cows more quickly regained a whole blood free calcium concentration of 1.00 mmol/L if they had most recently been supplemented with either anionic salts or with increasing amounts of barley, as compared to the basic ration. It is concluded that so-called slug-feeding or 'steaming up' with highly fermentable carbohydrates before parturition in milk fever susceptible cows enhanced calcium homeostasis similar to the effect seen in cows on anionic diets

    On the Performance Prediction of BLAS-based Tensor Contractions

    Full text link
    Tensor operations are surging as the computational building blocks for a variety of scientific simulations and the development of high-performance kernels for such operations is known to be a challenging task. While for operations on one- and two-dimensional tensors there exist standardized interfaces and highly-optimized libraries (BLAS), for higher dimensional tensors neither standards nor highly-tuned implementations exist yet. In this paper, we consider contractions between two tensors of arbitrary dimensionality and take on the challenge of generating high-performance implementations by resorting to sequences of BLAS kernels. The approach consists in breaking the contraction down into operations that only involve matrices or vectors. Since in general there are many alternative ways of decomposing a contraction, we are able to methodically derive a large family of algorithms. The main contribution of this paper is a systematic methodology to accurately identify the fastest algorithms in the bunch, without executing them. The goal is instead accomplished with the help of a set of cache-aware micro-benchmarks for the underlying BLAS kernels. The predictions we construct from such benchmarks allow us to reliably single out the best-performing algorithms in a tiny fraction of the time taken by the direct execution of the algorithms.Comment: Submitted to PMBS1

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces

    Circulating Tumor DNA Markers for Early Progression on Fulvestrant With or Without Palbociclib in ER+ Advanced Breast Cancer.

    Get PDF
    Background There are no established molecular biomarkers for patients with breast cancer receiving combination endocrine and CDK4/6 inhibitor (CDK4/6i). We aimed to determine whether genomic markers in circulating tumor DNA (ctDNA) can identify patients at higher risk of early progression on fulvestrant therapy with or without palbociclib, a CDK4/6i.Methods PALOMA-3 was a phase III, multicenter, double-blind randomized controlled trial of palbociclib plus fulvestrant (n = 347) vs placebo plus fulvestrant (n = 174) in patients with endocrine-pretreated estrogen receptor-positive (ER+) breast cancer. Pretreatment plasma samples from 459 patients were analyzed for mutations in 17 genes, copy number in 14 genes, and circulating tumor fraction. Progression-free survival (PFS) was compared in patients with circulating tumor fraction above or below a prespecified cutoff of 10% and with or without a specific genomic alteration. All statistical tests were 2-sided.Results Patients with high ctDNA fraction had worse PFS on both palbociclib plus fulvestrant (hazard ratio [HR] = 1.62, 95% confidence interval [CI] = 1.17 to 2.24; P = .004) and placebo plus fulvestrant (HR = 1.77, 95% CI = 1.21 to 2.59; P = .004). In multivariable analysis, high-circulating tumor fraction was associated with worse PFS (HR = 1.20 per 10% increase in tumor fraction, 95% CI = 1.09 to 1.32; P < .001), as was TP53 mutation (HR = 1.84, 95% CI = 1.27 to 2.65; P = .001) and FGFR1 amplification (HR = 2.91, 95% CI = 1.61 to 5.25; P < .001). No interaction with treatment randomization was observed.Conclusions Pretreatment ctDNA identified a group of high-risk patients with poor clinical outcome despite the addition of CDK4/6 inhibition. These patients might benefit from inclusion in future trials of escalating treatment, with therapies that may be active in these genomic contexts

    Extinction times in the subcritical stochastic SIS logistic epidemic

    Get PDF
    Many real epidemics of an infectious disease are not straightforwardly super- or sub-critical, and the understanding of epidemic models that exhibit such complexity has been identified as a priority for theoretical work. We provide insights into the near-critical regime by considering the stochastic SIS logistic epidemic, a well-known birth-and-death chain used to model the spread of an epidemic within a population of a given size NN. We study the behaviour of the process as the population size NN tends to infinity. Our results cover the entire subcritical regime, including the "barely subcritical" regime, where the recovery rate exceeds the infection rate by an amount that tends to 0 as N→∞N \to \infty but more slowly than N−1/2N^{-1/2}. We derive precise asymptotics for the distribution of the extinction time and the total number of cases throughout the subcritical regime, give a detailed description of the course of the epidemic, and compare to numerical results for a range of parameter values. We hypothesise that features of the course of the epidemic will be seen in a wide class of other epidemic models, and we use real data to provide some tentative and preliminary support for this theory.Comment: Revised; 34 pages; 6 figure

    Transmission Shifts Underlie Variability in Population Responses to Yersinia pestis Infection

    Get PDF
    Host populations for the plague bacterium, Yersinia pestis, are highly variable in their response to plague ranging from near deterministic extinction (i.e., epizootic dynamics) to a low probability of extinction despite persistent infection (i.e., enzootic dynamics). Much of the work to understand this variability has focused on specific host characteristics, such as population size and resistance, and their role in determining plague dynamics. Here, however, we advance the idea that the relative importance of alternative transmission routes may vary causing shifts from epizootic to enzootic dynamics. We present a model that incorporates host and flea ecology with multiple transmission hypotheses to study how transmission shifts determine population responses to plague. Our results suggest enzootic persistence relies on infection of an off-host flea reservoir and epizootics rely on transiently maintained flea infection loads through repeated infectious feeds by fleas. In either case, early-phase transmission by fleas (i.e., transmission immediately following an infected blood meal) has been observed in laboratory studies, and we show that it is capable of driving plague dynamics at the population level. Sensitivity analysis of model parameters revealed that host characteristics (e.g., population size and resistance) vary in importance depending on transmission dynamics, suggesting that host ecology may scale differently through different transmission routes enabling prediction of population responses in a more robust way than using either host characteristics or transmission shifts alone
    • …
    corecore