12,947 research outputs found

    ^{63}Cu, ^{35}Cl, and ^{1}H NMR in the S=1/2 Kagom\'e Lattice ZnCu_{3}(OH)_{6}Cl_{2}

    Full text link
    ZnCu3_{3}(OH)6_{6}Cl2_{2} (S=1/2S=1/2) is a promising new candidate for an ideal Kagom\'e Heisenberg antiferromagnet, because there is no magnetic phase transition down to ∼\sim50 mK. We investigated its local magnetic and lattice environments with NMR techniques. We demonstrate that the intrinsic local spin susceptibility {\it decreases} toward T=0, but that slow freezing of the lattice near ∼\sim50 K, presumably associated with OH bonds, contributes to a large increase of local spin susceptibility and its distribution. Spin dynamics near T=0 obey a power-law behavior in high magnetic fields.Comment: Phys. Rev. Lett. (in press

    The WAY theorem and the quantum resource theory of asymmetry

    Get PDF
    The WAY theorem establishes an important constraint that conservation laws impose on quantum mechanical measurements. We formulate the WAY theorem in the broader context of resource theories, where one is constrained to a subset of quantum mechanical operations described by a symmetry group. Establishing connections with the theory of quantum state discrimination we obtain optimal unitaries describing the measurement of arbitrary observables, explain how prior information can permit perfect measurements that circumvent the WAY constraint, and provide a framework that establishes a natural ordering on measurement apparatuses through a decomposition into asymmetry and charge subsystems.Comment: 11 pages, 3 figure

    SXP 7.92: A Recently Rediscovered Be/X-ray Binary in the Small Magellanic Cloud, Viewed Edge On

    Get PDF
    We present a detailed optical and X-ray study of the 2013 outburst of the Small Magellanic Cloud Be/X-ray binary SXP 7.92, as well as an overview of the last 18 years of observations from OGLE (Optical Gravitational Lensing Experiment), RXTE, Chandra and XMM-Newton. We revise the position of this source to RA(J2000) = 00:57:58.4, Dec(J2000) = −72:22:29.5 with a 1σ uncertainty of 1.5 arcsec, correcting the previously reported position by Coe et al. by more than 20 arcmin. We identify and spectrally classify the correct counterpart as a B1Ve star. The optical spectrum is distinguished by an uncharacteristically deep narrow Balmer series, with the Hα line in particular having a distinctive shell profile, i.e. a deep absorption core embedded in an emission line. We interpret this as evidence that we are viewing the system edge on and are seeing self-obscuration of the circumstellar disc. We derive an optical period for the system of 40.0 ± 0.3 d, which we interpret as the orbital period, and present several mechanisms to describe the X-ray/optical behaviour in the recent outburst, in particular the ‘flares'and ‘dips’ seen in the optical light curve, including a transient accretion disc and an elongated precessing disc

    Airloads research study. Volume 2: Airload coefficients derived from wind tunnel data

    Get PDF
    The development of B-1 aircraft rigid wind tunnel data for use in subsequent tasks of the Airloads Research Study is described. Data from the Rockwell International external structural loads data bank were used to generate coefficients of rigid airload shear, bending moment, and torsion at specific component reference stations or both symmetric and asymmetric loadings. Component stations include the movable wing, horizontal and vertical stabilizers, and forward and aft fuselages. The coefficient data cover a Mach number range from 0.7 to 2.2 for a wing sweep position of 67.5 degree

    Airloads research study. Volume 1: Flight test loads acquisition

    Get PDF
    The acquisition of B-1 aircraft flight loads data for use in subsequent tasks of the Airloads Research Study is described. The basic intent is to utilize data acquired during B-1 aircraft tests, analyze these data beyond the scope of Air Force requirements, and prepare research reports that will add to the technology base for future large flexible aircraft. Flight test data obtained during the airloads survey program included condition-describing parameters, surface pressures, strain gage outputs, and loads derived from pressure and strain gauges. Descriptions of the instrumentation, data processing, and flight load survey program are included. Data from windup-turn and steady yaw maneuvers cover a Mach number range from 0.7 to 2.0 for a wing sweep position of 67.5 deg

    Dynamic Scaling in the Susceptibility of the Spin-1\2 Kagome Lattice Antiferromagnet Herbertsmithite

    Full text link
    The spin-1/2 kagome lattice antiferromagnet herbertsmithite, ZnCu3_{3}(OH)6_{6}Cl2_{2}, is a candidate material for a quantum spin liquid ground state. We show that the magnetic response of this material displays an unusual scaling relation in both the bulk ac susceptibility and the low energy dynamic susceptibility as measured by inelastic neutron scattering. The quantity χTα\chi T^\alpha with α≃0.66\alpha \simeq 0.66 can be expressed as a universal function of H/TH/T or ω/T\omega/T. This scaling is discussed in relation to similar behavior seen in systems influenced by disorder or by the proximity to a quantum critical point.Comment: 5 pages, 3 figures v2: updated to match published version

    The Solar Neighborhood XIII: Parallax Results from the CTIOPI 0.9-m Program -- Stars with mu >= 1"/year (MOTION Sample)

    Full text link
    We present the first set of definitive trigonometric parallaxes and proper motions from the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI). Full astrometric reductions for the program are discussed, including methods of reference stars selection, differential color refraction corrections, and conversion of relative to absolute parallax. Using data acquired at the 0.9-m at CTIO, full astrometric solutions and VRIJHKsVRIJHK_s photometry are presented for 36 red and white dwarf stellar systems with proper motions faster than 1\farcs0/yr. Of these, thirty three systems have the first ever trigonometric parallaxes, which comprise 41% of MOTION systems (those with proper motions greater than 1\farcs0/yr) south of δ\delta == 0 that have no parallaxes. Four of the systems are new members of the RECONS 10 pc sample for which the first accurate trigonometric parallaxes are published here: DENIS J1048-3956 (4.04 ±\pm 0.03 pc), GJ 1128 (LHS 271, 6.53 ±\pm 0.10 pc), GJ 1068 (LHS 22, 6.97 ±\pm 0.09 pc), and GJ 1123 (LHS 263, 9.02 ±\pm 0.16 pc). In addition, two red subdwarf-white dwarf pairs, LHS 193AB and LHS 300AB, are identified. The white dwarf secondaries fall in a previously uncharted region of the HR diagram.Comment: 40 pages, 7 figures, accepted to The Astronomical Journal (scheduled for April 2005 issue), Re-submit, Table 2 running off the bottom of the page has been fixe

    A generalization of Schur-Weyl duality with applications in quantum estimation

    Full text link
    Schur-Weyl duality is a powerful tool in representation theory which has many applications to quantum information theory. We provide a generalization of this duality and demonstrate some of its applications. In particular, we use it to develop a general framework for the study of a family of quantum estimation problems wherein one is given n copies of an unknown quantum state according to some prior and the goal is to estimate certain parameters of the given state. In particular, we are interested to know whether collective measurements are useful and if so to find an upper bound on the amount of entanglement which is required to achieve the optimal estimation. In the case of pure states, we show that commutativity of the set of observables that define the estimation problem implies the sufficiency of unentangled measurements.Comment: The published version, Typos corrected, 40 pages, 2 figure

    Quantum Control of a Single Qubit

    Get PDF
    Measurements in quantum mechanics cannot perfectly distinguish all states and necessarily disturb the measured system. We present and analyse a proposal to demonstrate fundamental limits on quantum control of a single qubit arising from these properties of quantum measurements. We consider a qubit prepared in one of two non-orthogonal states and subsequently subjected to dephasing noise. The task is to use measurement and feedback control to attempt to correct the state of the qubit. We demonstrate that projective measurements are not optimal for this task, and that there exists a non-projective measurement with an optimum measurement strength which achieves the best trade-off between gaining information about the system and disturbing it through measurement back-action. We study the performance of a quantum control scheme that makes use of this weak measurement followed by feedback control, and demonstrate that it realises the optimal recovery from noise for this system. We contrast this approach with various classically inspired control schemes.Comment: 12 pages, 7 figures, v2 includes new references and minor change

    Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit

    Full text link
    We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes.Comment: contains Supplementary Informatio
    • …
    corecore