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Abstract. The Wigner—Araki—Yanase (WAY) theorem establishes an important
constraint that conservation laws impose on quantum mechanical measurements.
We formulate the WAY theorem in the broader context of resource theories,
where one is constrained to a subset of quantum mechanical operations described
by a symmetry group. Establishing connections with the theory of quantum
state discrimination we obtain optimal unitaries describing the measurement
of arbitrary observables, explain how prior information can permit perfect
measurements that circuamvent the WAY constraint, and provide a framework
that establishes a natural ordering on measurement apparatuses through a
decomposition into asymmetry and charge subsystems.
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1. Introduction

The issue of measurement in quantum theory is an old and rich topic, dating back to the
foundations of the theory itself. The traditional account tells us that a quantum system S
has a set of states described by a Hilbert space 7, while an observable Lg of the system is
represented as a Hermitian operator on 7/, whose eigenvalues are the possible values of Lg that
can occur in an experiment. A measurement of Lg is described by a set of projection operators
(or more generally as a positive-operator valued measure (POVM)) by which the quantum state
is projected onto an eigenstate of Lg, corresponding to each particular measurement outcome.
However, a measurement of Lg can be described in two distinct ways, firstly in terms of the
information acquisition in which our knowledge about a given quantum state p is abruptly
updated, or secondly by describing the situation from the outside, as a dynamical physical
process in which the system § couples unitarily to some quantum mechanical measuring device
A. This measuring device itself must possess an appropriate ‘pointer’ observable Z, that serves
to ‘record’ the particular value of Lg.

The prototypical model of a sharp measurement as a unitary process is the von
Neumann—Liiders measurement [1] in which the apparatus system is initialized in some default
state |¢@g) € Ha, and then dynamically coupled to S under some unitary V on Hs & Ha. The
observable Z, is assumed to have a sufficiently large, non-degenerate spectrum to describe all
possible measurement values of Lg, and the von Neumann-Liiders measurement is required
to be perfectly accurate in that V sends |e;) ® |@o) — |e;) ® |z;) for all i, where {|z;)} is the
eigenbasis of Z,. The von Neumann—Liiders measurement, denoted (Ha, Za, |¢o), V), has
certain distinct characteristics. In particular, it describes a sharp measurement of Lg in the
sense that we obtain a single value for the observable, and is also repeatable meaning that if
S is prepared in an eigenstate |e;) of Lg, then the measurement process leaves S in this same
eigenstate.
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In 1952 Wigner [2] provided analysis that showed that in the presence of a conservation
law it is impossible to perform an ideal measurement of an observable Lg that does not
commute with the conserved quantity. Specifically, Wigner showed that if one has an additive
conservation law of some quantity N,, = Ng ® 1+ 1 ® N, over the composite system (such as
angular momentum or baryon number), and an observable Lg for which [Lg, Ng] # 0, then
there cannot exist a von Neumann-Liiders measurement that respects the conservation law with
[V, N,] = 0. Wigner demonstrated, however, that an approximate measurement of Lg can be
performed, with the error decreasing as a function of the size of the apparatus system. This result
was later formalized in the work of Araki and Yanase [3, 4], where in particular [4] highlighted
the necessity that the pointer observable Z, should commute with the conserved quantity
for the apparatus—the Yanase condition. The requirement that [Z4, No] =0 is in hindsight
essential, since otherwise the issue of the measurability of a non-commuting observable can
simply be shifted from the system to the apparatus, for example through a swap unitary, and the
central problem has merely been postponed. In his paper, Yanase derived a lower bound for the
probability of an unsuccessful measurement that scaled as (N)~2, a lower bound also obtained
by Ghirardi et al [5]. This lower bound was later tightened by Ozawa [6] through an application
of his generalized uncertainty relation [7]. He found that the root mean square noise €(Lg) in
the measurement of Ly is lower bounded as

[{[Ls, Ns])|?
do (N5)2 +4o (NA)2 ’

where €(Lg)?* = (N(Lg)?) for the noise operator N (Lg) = vid®Zy)V —Lg®1 and o (X)
denotes the variance of an observable X in the initial state of the composite system.

The WAY theorem recently received renewed attention by Loveridge and Busch, who have
extended to the WAY theorem to continuous variable scenarios such as the joint measurement
of position and momentum [8], and have also shown that both repeatability and the Yanase
condition must be violated if one is to perform a perfect measurement of Lg [9]. The net result
of all these works is the following form of the WAY theorem.

e*(Ls) >

(D

Theorem 1.1 (WAY). Let M(Ha, Za, |¢o), V) be a von Neumann—Liiders measurement for an
observable Lg on S with eigenstates {|e;)}, with pointer observable Z, on A with eigenstates
{|zi)}. Let Ng and N be bounded observables on Hilbert spaces Hs and H a, respectively, such
that the unitary V obeys [V, Ng®@ 1+1® Np] = 0. If M is repeatable or satisfies the Yanase
condition, [Zx, No] =0, then [Lg, Ng] = 0.

The aim of this paper is to provide an information-theoretic framework that gives a natural
and powerful arena in which to analyse arbitrary measurements in the presence of a conservation
law. This arena allows us to determine the ultimate constraints on measurements of a given
observable under various criteria, to identify the role of prior information in a measurement, to
provide an analysis of measurement apparatuses through a subdivision into asymmetry content
and charge content, and to describe the role that these two features play in any approximate
measurement scenario.

The structure of this paper is as follows. In the next two sections we review the idea of a
resource theory of asymmetry, highlight the key properties of the U (1) case that will be needed
for our analysis and describe the connection between this resource theory and the presence of
a conservation law. In section 2.3 we establish an equivalence between von Neumann-Liiders
measurements and quantum state discrimination protocols, which leads us to a proof of the
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WAY theorem in section 2.4, and provides a neat framework in which to understand the
constraints arising from conservation laws. Section 2.5 describes how one can easily construct
unitary models that optimally approximate the measurement of observables in a WAY scenario,
and elucidates the role that asymmetric resource states and charge eigenstates play in such
measurements. Section 3 illustrates these concepts through the example of a two-dimensional
system, by constructing the optimal measurement of an observable Lg for which [Lg, Ng] # 0,
realized as a simple quantum circuit, while section 3.2 analysis a non-trivial optimization
scenario using an infinite dimensional measuring apparatus with bounded asymmetry resources
and shows the surprising result that under certain natural criteria the optimal resource states do
not coincide with the most asymmetric ones. We conclude and discuss our results in section 4.

Our notation follows that found in current quantum information theory, and except for H,
IC, R (denoting Hilbert spaces) and B(#) (denoting the set of bounded operators on H) we
shall denote superoperators using calligraphic script (such as £ and F), and their corresponding
Kraus operators written in corresponding Roman script (so for example we would write
E(p)=)_; El-,oEiT ). A computational basis is taken simply to be a distinguished orthonormal
basis for the system’s Hilbert space, and denoted |0), |1), |2), ..., |M).

2. Resource theory of asymmetry, quantum state discrimination and the WAY theorem

A useful and unifying concept in quantum information theory is the idea of a consumable
‘resource’, and its meaning largely coincides with its use in many other contexts. Intuitively
speaking, a resource is anything scarce or hard to obtain and which must be consumed in order
to achieve some desired action or task. For example, in order to produce mechanical work one
must consume free energy, and in order to teleport a quantum state some entanglement must be
consumed.

Every quantum resource theory is defined by a set of restrictions on the type of operations
that we can perform. Only certain states can be prepared under such restrictions, and the
resource states are simply defined as those states which cannot be prepared under the restriction.
For the resource theory of entanglement, we define a certain class of operations corresponding
to allowing Local Operations and Classical Communications (LOCC), and which provides an
axiomatic definition of entangled states as its resource states. Entanglement, in all its different
forms, is simply identified as that which does not increase under LOCC.

When in the possession of a resource state |¢), we may ask what other resource states
can be obtained from [y) through the allowed operations of the theory. In general the
allowed transformations between resource states is highly complex, and we often subdivide the
problem and consider either strictly deterministic transformations or more general stochastic
transformations. Once the allowed transformations between states have been established we
have a notion of one state being more of a resource than another, and we may define various
measure functions to quantify the particular resource, as we shall illustrate in the next section.

2.1. The resource theory of asymmetry

All conservation laws can be identified with particular symmetries, and symmetry groups.
Energy and momentum conservation corresponds to translational symmetry in time and space
respectively, while angular momentum conservation has associated the rotation group SO (3).
The symmetry group G of a conservation law itself defines a class of allowed quantum
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operations that respect the symmetry action. This in turn defines a resource theory in which
asymmetric states (with respect to G) are defined as the valuable resources. While a conservation
law might define a theory of asymmetric states it turns out that the operations that respect
the particular conservation law only form a proper subset of the allowed operations of the
asymmetry resource theory, as we shall explain in section 2.2.

The presence of a group structure allows us to bring to bear all the usual machinery of
representation theory in describing the various constituents of the resource theory. Given a
system with associated Hilbert space #, and a unitary representation of the group U : G —
B(H), so that quantum states transform as p +— U(g)pU'(g) under the group action. The
allowed quantum operations £ : B(H) — B(#) of the theory are the G-covariant operations
& such that E(U (g)pUT(g)) = U(g)E(p)UT(g) for all p and all g € G.? This condition can be
expressed compactly as

[£.U(g)]=0, VgeG, (2)

where U(g)(-) = U(g)(-)U"(g) is a superoperator acting on B(#) [10, 11].

The state p is then called a symmetric state if [p, U(g)] = 0 for all g € G, and asymmetric
otherwise. Symmetric states are ‘cheap’, being preparable for free within the theory, while
asymmetric states, transforming non-trivially under the group action, are the resources. The
asymmetric states are often referred to as ‘quantum reference frames’ [12—16].

In the same way that entangled states are useful states for quantum information processing
tasks [17], the possession of asymmetric states allow certain tasks otherwise impossible within
the constraints of the theory. For example, for G being the rotation group in three dimensions,
asymmetric states allow the preservation of quantum information encoded in a particle’s spin
degree of freedom [12, 18], or a projective spin measurement along a particular spatial axis [20].

The case G = U (1) will be of particular interest to us, and may be associated to the analysis
of phase reference frames, such as with a harmonic oscillator, laser or BEC. This abelian group
is generated by an operator N as U (0) =e ™/, which we may take simply to be a ‘number’
operator with integer eigenvalues. The full Hilbert space then splits up into eigenspaces, or
charge sectors, of N for which we write H = @, H,,.

The asymmetric states of the theory may be written as [y/) = ), \/Px|¥,), Where |v,,) is
a state lying entirely in the n-particle sector H, of the operator N on H. The interconversion
of U (1)-asymmetric states might be achieved deterministically or stochastically through U (1)-
covariant quantum operations respecting the group symmetry. Given the state |y) we might wish
to know whether |{) can be deterministically converted to some other state [¢) =) N nPn)s
using only U (1)-covariant quantum operations alone. For this deterministic case a necessary
and sufficient condition is known [21] and depends only on the two states’ distributions over
charge sectors, which we write as p = (py, p2,...) and q = (¢, ¢2, . . .), for simplicity. It can

be shown that |1//)i(l)i)>V |p) deterministically if and only if p = Y, w T*®q where 0 < w; < 1
and Y, wy =1, and [T®V]; = v, In other words the linear translation map 7% acts by
shifting the components of vectors by k steps to the right for k a non-negative integer or by |k| to
the left when k& is a negative integer. For example, with N = Z@o n|n)(n|, the U (1)-asymmetric
state %(|O) + 1) +12) +|3)) can be converted deterministically, using only covariant operations,
to the state %(lO) +1)) or to the state %ﬁ(ll) +13)), but cannot be converted to %(lO) +13))

2 This definition is easily extended to the more general case where the quantum map is of the form £ : B(H) —
B(K), for Hilbert spaces # and K of different dimensions.
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deterministically. However, the latter state may be obtained stochastically. Indeed, it turns out
that from the uniform superposition state ﬁ Zflv:o |n) we can stochastically obtain any state

of the form fozo a,|k+n) for any k € Z and any {a,} respecting normalization®. Also note
that if we take N to be a conserved observable then the above examples show that G-covariant
transformations generally violate this conservation law.

Whether we consider deterministic transformations or stochastic transformations, we have
that any two states, |11) and |1,), can be related within the theory in one of three ways. It might

U(l)-
have that |i;) <

interconverted, or it might be that |i) |1,) only, meaning |y) is the state with the
greater asymmetry, and can be irreversibly converted to |y,) using covariant operations (or vice
versa). Finally it might be the case that no covariant transformation exists between |y;) and
|1,), meaning the two states are fundamentally incomparable within the theory. These relations
define a partial order < on the space of states where p < o if and only if p can be obtained from
o by covariant operations. The order derived from deterministic transformations, <g, is a strictly
stronger relation than that derived from stochastic transformations, <. More specifically, this
means that a pure state |{) defines a stochastic branch of pure states {|¢p) : |¢) < |¥)}, which
contains as a proper subset within it the deterministic branch of pure states {|¢) : |¢) <q |¥)}.
Any real-valued function that respects the stochastic partial ordering provides us with
a measure of asymmetry, and certain particularly natural measures of pure state asymmetry
already exist. If we choose |¢) = %(lO) +|1)) as our basic unit of asymmetry (an ‘asbit’ [19]),
and consider conversion rates involving asymptotically many copies of |y), we find (for p being

gapless) that

|Y,), meaning they are equally asymmetric and can be reversibly
U(1)-cov

)2 (g Ve, 3)
where Var(y) = 4((¥|N?|y) — (¥|N|¥)?) is four times the variance of N in the state ).
Another such measure is the ‘relative entropy of frameness’ [22], for a pure state |{) =
Y, A/Pnln), which turns out to be H(p), the Shannon entropy of the distribution {p,}. For a
system of dimension M + 1 (or restricting to states in the subspace of sectors Ho® - - - D Hy)
both these measures attain their maximum value on the uniform superposition state

1

|¥) m(|0>+|1>+ +[M)). 4)
In this sense, one can then identify the uniform superposition state (4) as the most asymmetric
pure state with support entirely in Hy @ ... ® Hy, however subtleties arise when we consider
optimizing certain tasks. Often our measure of success of a task is expressed in terms of some
probability that involves a potentially complex chain of conditionals, and so, in the absence
of task details, it is only possible to pronounce the state |\W) as optimal if we restrict to its
deterministic branch. If, however, we enlarge our scope to the full stochastic branch of |¥),
being all the pure states of the system, any probabilistic measure of success must include the
conversion probabilities in going stochastically from |W) to some other state, and so it may
happen that for a particular task the optimal state differs from |W). We provide an explicit
example of this feature in the context of a WAY scenario (for which |W) was the state originally
considered in [2—4]) in section 3.2.

3 See [21] for a fuller account of the resource interconversions, and conversion rates for stochastic transformations
between states.
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2.2. Relation between additive conservation laws and U (1) resource asymmetry

As noted earlier, the constraint of a conservation law is a strictly stronger one than the
asymmetry constraint of its associated group. For example, energy conserving operations
can only transform states within each individual energy sector, while its associated U (1)
resource theory (defined by time evolution U (¢) = exp(—itH)) would include U (1)-covariant
transformations that increase or decrease the total energy. Indeed reversible energy conserving
transformations correspond to U (1)- invariant unitaries V for which [U (¢), V] = 0 for all 7.

One might expect that the units of energy (or conserved ‘charge’) available for use within
a bounded apparatus might play a role in addition to any issue of asymmetry. For example,
any addition of units of the conserved quantity in the apparatus allows a greater range of
transformations through energy conserving couplings between the system and the apparatus.
This physical intuition is made more concrete by considering Stinespring dilations of the
allowed quantum operations under the U (1)-constraint. In its Schrodinger form for G-covariant
operations it states that [23]

Theorem 2.1. Given a G-covariant trace-preserving, completely positive map £ : B(H) —
B(H), there exist a dilating system K carrying a representation of G, a G-invariant unitary
V on HRK, and a G-invariant state |¢) in K such that E(p) =Tr[V (o ® |@)e)VT].
Moreover, if € =), & for G-covariant completely positive maps {E;}, then there exist positive
operators {F;} on K such that ), F; = 1 and [Ux(g), F;1=0, with & (p) = Tre[(LQ F;V(p @
o) @)V,

Applied to the G = U (1) case, we conclude that the set of unitary dynamics on a composite
system of § and K that respect the additive conservation law Ng® 1+1® N (such as in
the WAY-theorem scenario) together with the ability to introduce eigenstates of Ny coincides
with the set of U (1)-covariant quantum operations allowed on the system S, in which quantum
coherence in the eigenbasis of the conserved quantity N,, constitutes a resource. If the spectrum
of Nk is unbounded then the particular eigenstate |¢) used is largely a matter of choice.

The conservation law dictates that the total amount of the conserved quantity in the closed
system never varies, which holds true also for classical systems, however the generation of
asymmetric resources is a more subtle prohibition and in a sense should be viewed as an
additional, non-classical constraint*. The possession of eigenstates of the conserved quantity
allows us to perform many useful tasks under the conservation constraint, however the
possession of asymmetric resources greatly extends the set of things that we can do.

2.3. Equivalence of von Neumann—Liiders measurements and quantum state discrimination

The WAY theorem can now be cast within the framework of asymmetric resources. We consider
the situation of some additively conserved quantity N, over two systems S and A, and demand
that any unitary V respect the conservation law in that [V, N,]. We consider some arbitrary
observable Ly for the system S and attempt to construct a unitary model for its measurement.
We know from the previous section that the conservation law scenario is equivalent to that of
a U(1)-asymmetry constraint on S alone and view the apparatus A as the dilating system of
any covariant map on S, in which any covariant operation gives rise, via a Stinespring dilation,

4 For example in thermodynamics one can generate energy asymmetry without changing the total internal energy
of the system, see [24, 25] for a discussion.
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to conserving unitary dynamics coupling the system to the apparatus A = C prepared in an
eigenstate of N, followed by a measurement of an observable Z, that commutes with N,. We
can thus focus solely on the system S and restrict to covariant maps F, safe in the knowledge
that they can be obtained from some conserving unitary V.

We denote the spectral decomposition of Lg as Ls =), lx|ex)(ex|, and for simplicity
consider a non-degenerate spectrum. In the absence of any constraints, a projective
measurement of L is described by the trace-preserving operation M = )", M, with M (p) =
lex) (ex|plex) {ex| for all k. Our task in the presence of constraints is then to obtain U (1)-covariant
superoperators {F;} such that the POVM {F;} is as close as possible to { M}, where ‘close’
must now be given some operational meaning.

To define some measure of performance, we may recast the goal of performing a
measurement of L in more information-theoretic terms as the encoding of classical information
in the eigenbasis of Lg, where the classical information is encoded in the label of the eigenstate,
k — |ex){ex|. A state diagonal in this eigenbasis is prepared, and given by p =) . p;le;) (e,
where {p;} describes the distribution of the classical source. In the absence of any constraints,
a faithful readout of the signal is always possible through the application of any M, for which
(i) M;(lex)(ex]) =0 fori # k and (ii) ), Tr[M;[p]] = 1 for any p. However in the presence of
the conservation law, it may be that the ideal M is not a covariant operation, and so the best
we can achieve under the constraints is some approximate discrimination of the eigenstates
of Lg which will fail to satisfy both (i) and (ii). Two natural approximate discrimination
protocols are unambiguous discrimination (UD) and maximum likelihood estimation (MLE),
with each corresponding to the weakening of one of the two central conditions of perfect state
discrimination.

For UD, we still demand that F; (o) = 0 for i # k, but now allow the possibility that ) _, F;
is a trace-decreasing POVM map. The interpretation of the first condition is that in obtaining
outcome i of the POVM we are certain that p; must have been prepared—we have discriminated
unambiguously—while the second condition of allowing trace-decreasing ) . F; means that
sometimes the protocol may fail entirely and we learn nothing about the state. The full quantum
operation must conserve probability, and so is described by a total trace-preserving operation
F =), Fi+F, for which F;(p;) = 0 for i # k, and Tr[F,(p)] being the probability of failure.
The goal of UD is to minimize this probability, or equivalently to maximize the probability
> piTr[F; (p;)] of successfully identifying the prepared state.

While UD is essentially the scenario considered in Wigner’s seminal paper, recasting the
problem in abstract, information-theoretic terms allows us see that another perfectly natural
possibility to consider is that of MLE. MLE decides instead to place the short-fall on the
first condition. In other words, we enforce that Zi F;: is trace-preserving, but now allow the
possibility of approximate discrimination F; (p;)~0 for i # k. The goal of MLE is to maximize
the probability ) . p;Tr[F; (p;)] of successfully identifying the prepared state.

In the unconstrained setting and when p; > 0 for all i, the projective measurement M in the
eigenbasis of Ly is singled out as the optimal measurement procedure to distinguish the states
in the ensemble {p;, |e;)(e;|} perfectly. However this perspective allows us to do more if we
wish, and account for prior information as to what state the system was prepared in initially. For
example, one might be limited in the particular operations that we can perform, but knowing that
our system was prepared with support only in some subspace means that a faithful measurement
of Lg may yet be possible though a quantum operation distinct from M.

New Journal of Physics 15 (2013) 013057 (http://www.njp.org/)
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In the U (1)-constrained scenario associated to the conservation of Ng, the measurement
of L becomes the task of optimally discriminating its eigenstates using only U (1)-covariant
POVM maps F = {F;}. For the case of UD this amounts to minimizing Tr[F,[p]] for p =
>k Prbx = Zl?:l % lex) (ex|, where for simplicity we do not assume any prior information as to
what eigenstate is being prepared.

2.4. Proof of the WAY theorem

All the necessary pieces are now in place. A unitary model for a measurement of the observable
Lgs in the presence of an additive conservation law N, = Ng+ N, defines a constrained
discrimination protocol of orthogonal states within a U (1)-asymmetry theory, and conversely
any such constrained discrimination protocol defines a unitary model of some measurement in
the presence of a conservation law. Whether such a unitary model is possible, or to what degree
an approximate model exists, is then determined by the theory of quantum state discrimination
under the constraint of covariance.

At the simplest level within a G-asymmetry scenario, a distinction is drawn between
symmetric states and asymmetric states; between covariant superoperators and non-covariant
superoperators. However, given an asymmetric state p one can always obtain a symmetric state
p from it through an averaging over the group p — p = [dg U(g)pUT(g), called G-twirling,
and in the same way, given some non-covariant operator £ one can obtain a G-covariant map
through the super-operator G-twirling £ — & := [dgU(g)oEoU'(g). Both these maps are
idempotent and are the projectors onto the set of symmetric states and the set of G-covariant
maps respectively. Consequently, the minimization of Tr[F.(p)] over the set of U (1)-covariant
quantum operations is equivalent to the minimization of Tr[F.(p)] with {F;, F,} taken over
the full set of quantum operations. However Tr[F.(p)] = Tr[F.(p)], and in a similar way
the discrimination condition (i) can be written F;(p;) = 0 for i # k. In other words, we can
reformulate our optimization task to that of an unconstrained UD of the G-twirled ensemble
{pi, pi}-

The implications of this are immediate. A unitary model for the measurement of Lg exists
if and only if we can discriminate {p;} perfectly. This is true if and only if {p;} have orthogonal
supports. Assuming that {p;} has support on a full eigenbasis of Lg, if any of the states in the
G-twirled ensemble have rank larger than one, then they must overlap with at least one other
state in the ensemble and so a perfect von Neumann—Liiders measurement is impossible. Thus,
such a measurement will exist if and only if all G-twirled states are rank one, in which case we
have that f dg U(g)lex)(ex|UT(g) = |gx) (pr|. However pure states are the extremal points of
state space and so |@;) (@] = |ex) (ex] = U(g)lex){ex|U(g) for all g, and so Lg must commute
with Ng, which completes the proof of the WAY theorem from the resource theory perspective.

2.5. Optimal von Neumann—Liiders measurement of non-commuting observables

The previous analysis identifies when a perfect von Neumann—Liiders measurement of an
observable L g can occur in the presence of the conservation law, however the formulation allows
us to go beyond simply achieving the projective measurement {AM;}. We immediately see that
the optimal approximate measurement that respects the conservation law will correspond to the
optimal discrimination protocol for the G-twirled ensemble {py, pr}. In section 3 we provide
explicit examples of such optimal protocols, but before that we describe two ways in which the
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constraint of a conservation law on the measurement of a non-commuting observable can be
overcome.

2.5.1. The possession of prior information. It turns out that perfect measurement of a non-
commuting Lg may well be possible in the presence of prior information. If our prior
information is such that some p; are zero then it may occur that the G-twirled states are all
mutually orthogonal, despite being mixed states. For this situation a perfect measurement of
the observable L is possible, despite Lg not commuting with the conserved quantity. Phrased
another way, in the presence of a conservation law each observable Lg has a ‘blurring’ scale
corresponding to the number of eigenstates of Ng in the expansion of the eigenstates of L.
The blurring extreme occurs for observables with eigenstates being fully unbiased with respect
to those of Ng, and so G-twirl to maximally mixed states. Prior information for states with
coherence in the basis |e;) can be handled equally well since the presence of the U (1) constraint
implies that the coherent prior information should be decohered in the eigenbasis of L.

2.5.2. The possession of asymmetry resource states. When Lg does not commute with the
conserved quantity its G-twirled eigenstates will overlap and only an approximate state
discrimination is possible, whether under UD or MLE. Indeed for the extreme case that all its
eigenstates G-twirl to the maximally mixed state we find that no discrimination, and hence no
perfect von Neumann-Liiders measurement, is possible at all. However such scenarios are not as
final as they might first appear. The key idea is that while we are constrained to performing only
certain types of operations it might be that we are initially in possession of valuable resource
states, whose presence enable otherwise impossible transformations.

The possession of an additional system R in an asymmetric state |\V) allows us to better
encode the eigenstates of the observable Lg in preparation for the discrimination protocol.
Specifically, defining |g) := U(g)| V), we can define a sequence of quantum operations

lex) = |W) ® [er) — /dg 1g)(gl @ U(g)lex)(elU(g), S

which is no longer the maximally mixed state. The non-trivial transformation of the state |\W)
under the group provides a quantum reference frame, which allows the (partial) encoding of the
state |ey) into the relational degrees of freedom of the composite G-invariant state [26]. From
the perspective of the von Neumann—Liiders measurement, the asymmetry resource system
constitutes a distinct part of the measuring apparatus, and so we in general have that A =R ® K,
where KC accounts solely for the sharp units of conserved charge required within A.

3. Explicit examples

We can now illustrate the preceding ideas with the explicit example of obtaining a probabilistic
von Neumann-Liiders model that describes the measurement of an observable Lg of a two-
dimensional quantum system, with eigenstates |e,) =1/ ﬁ(|0) +/1)) and le_) =1/ ﬁ(lO) —
|1)) while still respecting a conservation law of the observable Ny = Zn>0n|n)(n| = [1)(1].
This scenario describes, for example, the situation of a spin—% particle with angular momentum
conserved only along the Z-direction, or the situation of a photon number state in quantum
optics, as in the original considerations of Wigner [2] and Yanase [4].
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It is readily seen that the action of the group transformation U (0) = exp(i6@ N) G-twirls
both |e,) and |e_) to the maximally mixed state %(|O) (O] +]1)(1]). Hence, in the absence of
any resource state it is impossible to even approximately perform a von Neumann-Liiders
measurement of the observable Lg.

3.1. Uniform superposition states as asymmetry resources

What about if we have in our possession some resource asymmetry? For simplicity we consider
having a uniform superposition of number states |V) = ﬁ(m) +---+|M)), which under
the conditions discussed earlier, is a maximally asymmetric state for a resource system R, of
dimension M + 1.

We find that the states |W) ® |e+)G-twirl to the mixed states

1 M
+ +
+1;|<;>,,><<z>,,|, ©6)

bi:G+M

M(m, 0)(0,0]+|M, 1)(M, 1|), while the remaining eigenstates are

given by |¢>ni) = %(ln, 0) & |n — 1, 1)) for n between 1 and M. The states p. have overlapping
support only on the space span (|0, 0), |M, 1)), whereas they are orthogonal on the rest of the
space. As M increases the two states approach orthogonality, and hence become perfectly
distinguishable. Thus, in the limit of an infinite reference frame system (M — oco) perfect
measurement of the observable L g becomes possible.

The states in the G-twirled ensemble {p., p1} will always be block diagonal matrices in
the conserved quantity basis. The full Hilbert space for the primary system and resource system
splits up into the eigensectors of Ng as H = P, H, with IT, being the projector onto sector ,,
and n running from zero to M + 1. This decomposition simplifies the analysis for obtaining the
optimal UD measurement, since it turns out [27] that if {f,f")} is the optimal POVM for the UD
of the projected ensemble {p; I, 0, I1,} then F = {F;} with F, =) ]—"k(") is an optimal POVM
for the original ensemble {py, por}.

Since the projection of the states p. into the subspaces with total numbern =1,2,..., M
are orthogonal we have that perfect discrimination is possible in each sector H,, simply through
the projective measurement onto the basis {|¢}), |¢,)}. In contrast, the two states p, and
p_ are identical when projected onto the one-dimensional sectors #, and H,s,;, and so all
measurements fail to provide any information.

We deduce that the optimal POVM measurement for the twirled ensemble {p.., p.} is given
by {F,, F_, F.} where F, are projection maps given by the rank M projectors 224:1 lpE) (],
while F, is the rank 2 projection onto the ‘bad’ sectors H, and 4, which occurs with
probability .

By the covariant Stinespring theorem, we know that this optimally discriminating POVM
can be dilated to a unitary model in which

Fiwlp) =Trel(1 @ FL) V(o ® l9) @)V (7

for some unitary V respecting the conservation law, some state |¢) invariant under the group
action and POVM elements F. , on I, also invariant under the group action. The elements F. ,
correspond to the eigenstates of the pointer observable Z,, and by construction automatically
obey the Yanase condition.

where we have o =
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Figure 1. Quantum circuit for a von Neumann—Liiders measurement of the
observable L.

It turns out that the measurement may be cast as an easily understood quantum circuit,
in which the dilating system X constitutes three ‘register’ qubits, initialized in the state |001).
A von Neumann-Liiders measurement would require that the states |+ ) ® [W) ® |001); 5 3
evolve so that the eigenstate of the system is recorded in the computational basis of the register
qubits, and can be read out by a measurement that respects the conservation constraint. The
unitary over the composite system

M M
V=(10,0)(0, 0[+|M, 1)(M, 1) ® Li3+ ) _ |, ) (e, | @ SWAP23+) " 67) (7] ® SWAP, 5 (8)

and is represented as a quantum circuit in figure 1. The three register qubits simply correspond
to ‘+’, ‘=’ and ‘inconclusive’. The projective measurement on the joint system is coupled to
swap operations that shift the location of the ‘1’ in the register conditional on the outcome of
the measurement. If the result of UD is ‘+’ it swaps register 2 and 3, if the result is ‘—’ it
swaps register 1 and 3 and if the result is inconclusive it does nothing to the register qubits.
By inspection, the unitary model corresponds to the optimal UD protocol in the presence of the
maximally asymmetric resource state |\V) for R and requires only a single unit of the conserved
charge in the initial state of K. This is optimal on the deterministic branch of |¥), as discussed
either, and it can be shown that nothing is gained if we deviate off this branch, and so the
performance is the optimal for such a scenario.

We might wonder if another discrimination criterion might be better satisfied by the above
setup. For MLE the analysis proceeds in a straightforward manner, and it turns out that the
optimal POVM is achieved through the projective measurement {P, = nyz o) (or], P =

1- Z;W: o) (@)1}, which as a unitary circuit has the form

V:P+®112+P_®SWAP1,2. (9)

The probability of success is %, which is identical to the case of UD. While | W) is a maximally

asymmetric state for our system, and so is optimal on its deterministic branch, the issue of its
optimality overall is more subtle and is discussed in the next section where surprisingly we find
that for the MLE criterion it is not the optimal state over the full Hilbert space.
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The issue of repeatability can also be simply understood within the quantum circuit
example. If in addition to the resource state |\W) we also have another resource state |Y..,,) =
%(lO) +|1)) then we can simply adapt our quantum circuit so that the conditional swap gate also
swaps in a fresh copy of |e,) to S in the event of a ‘+” outcome, and in the event of a ‘-’ outcome
performs a 7 -phase shift on [/c.p,) and now swaps in a fresh copy of |e_) to S. This ensures that
in the event of a successful discrimination that the system § is kept in its original eigenstate,
however this does not provide perfect repeatability, since with some non-zero probability the
discrimination stage will fail and so cannot algorithmically restore the system to its original
state.

3.2. Non-trivial asymmetry resources

In this section we give an example where the apparatus is of bounded-size, but the number
of terms in its expansion is not bounded from above. Due to its practical importance we use a
coherent state as our apparatus instead of a uniform superposition of number states. We compare
the rate of increase of the probability of success in discriminating the two G-twirled states using
MLE and UD.

3.2.1. Unambiguous discrimination. We again consider the measurement of the observable
L with eigenstates |+) and |—), as in the previous section, but consider an asymmetry state of
greater experimental relevance than the uniform superposition state |W). Specifically, we use
for our asymmetry resource system some infinite dimensional system R, prepared in the zero

lX2 n . . .
phase coherent state |o) =€~ = Z;:O:O 57 |n), for which the states in the G-twirled ensemble are
given by

I
P =57 210,00(0, 01+ > A1) (7. (10)

n>1

We now have that the eigenstates of the G-twirled state in each sector are given by

'(”ﬁ:ﬁ'”"})iw/oﬂn—m'”‘l’” (11)

with probability in the mixture given by

efa2a2(n71) a2
p=—-—1-—|1+—]. (12)
(n—1)! n

Again the two density operators are block diagonal in the eigenbasis of N, and so our task again
reduces to optimal discrimination within each sector, however this time the projected states are
no longer orthogonal to each other. Within the sector 7, we have

2

o L
1 il —
prn=—7s| ", Vnl, (13)
I+ = 1
Jn
each occurring with projection probability
T, 7] = b e (L4 2 (14)
r[Il,p+]==¢ —t—).
PE=5 n - (n—1)!
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Figure 2. (1 — Pp) as a function of (N) in log scale with a bound (dashed line)

obtained by Ozawa of 1 — (4+ 16(N))~', under a different criterion. P, is the
probability of success in UD.

First we need to calculate the maximum probability of success in obtaining the conclusive result
when trying to unambiguously discriminate the two projected states (13). These states have one-
dimensional kernels for which the problem of optimal UD admits a tidy solution [28, 29]. In
order to satisfy the earlier condition (i), the discriminating POVM elements must be of the form
(X)) O bl ) G 1 L—alx)) et = bl ), 1), where | x,) {(x;£| are the projectors onto
the kernels of p, and so the only variation parameters in the problem are the weights A and b.

The optimal values of A and b are functions solely of the overlap probability of the two
states | X;—L) and the prior probabilities for the ensemble elements.

For our particular state the optimal POVM occurs for a°' = h°P' = % which results in
the maximum probability of success as

2n 5
+a? ns o
> Pea A B = 1" S (15)
k o 7 o?.
n+ao

Summing over all sectors we find that the optimal success probability to unambiguously
discriminate the two states using the coherent state as the asymmetry resource is given by

NNH
NI(1+N)’
where N = (N) is the expectation value of N for the coherent state. In the large N limit,
Stirling’s approximation gives us that Py,~1 — \/2177\/ (figure 2).

Pp=1—¢e" (16)

3.2.2. Maximum likelihood estimation. We may alternatively, follow a MLE route in which
we compute the optimal discrimination, by once again restricting to the individual sectors.
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Figure 3. (1 — Py,;) as a function of (N) in log scale for three different states:

coherent state, uniform superposition of number states and the optimal phase
quantum reference frame (QRF). P, is the probability of MLE success.

The probability of success in each sector H,, is Py, = %Tr[,b;l'lm] + %Tr[,bn‘ I1_,], where I1, ,
and I1_, are the POVM elements which we take to be projections and for simplicity we have
taken p, = p_ = 1. This can be re-written as Py, = 1 + 3 Tr[(p; — p, )I1.,], which can be
seen to take its maximum value

1 <\/ nN )

P MLEn —

Z 4 _ 17

2 \n+N 1n
when IT, , = 1 (] |). Note that for a fixed value of N this probability increases from the value 1
at n = 0 to unit probability at » = N (if N € N), before decreasing once more to % as n — oo.

Summing over the sectors, we find that the optimal probability for MLE on the G-twirled
ensemble is

—-N > A7n—1 A
e N N
P. =— |14 _— 1+ — . 18
T4 Zﬂ_l (n—1)! n (1%
As can be seen from figure 3, a bounded, infinite dimensional coherent state performs better
than a finite uniform superposition state when we use the MLE as our criterion to discriminate

between the states in the ensemble.

3.3. The surprising case of optimality occurring off the deterministic branch of |\V).

We have found that under the criterion of MLE discrimination it is possible to perform a
probabilistic von Neumann—Liiders measurement with success probability % for the uniform
superposition state |V), and with larger probability given by (18) in the case of a bounded
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coherent state. Any comparison between the coherent state and the state |\W) can rightly be
questioned, given that the former is for an unbounded system and the dwindling amounts of
asymmetry on its higher sectors H 41, Hus2, - - ., might be contributing enough to make the
comparison unfair.

However the same cannot be said for states within the stochastic branch of |W). As
discussed, the state |¥) must be optimal on its deterministic branch, but it turns out that under
the criterion of MLE it is not in fact the optimal state. In other words there exists a non-uniform
state |®,y) which has a higher probability of success, but where the stochastic conversion
W) — |®qy) occurs with a sufficiently low probability that we are heavily penalized if we
begin initially with the state |W).

MLE was previously considered in the context of quantum phase reference frames [30],
where a pure state quantum reference frame is used to distinguish between two states |+) and
|—), as above. The analysis revealed that the optimal phase reference frame for a bounded
system of dimension M + 1 is given by

M (n+ 1)
|q)0pt> =C Z sin |:—+] |l’l> (19)

with the normalization constant C is given by C~2 = i(l +2M —cscx sin[(2M + 1)x]) +
sin’[(M + 1)x], and where x = 375+ This state provides us the globally optimal MLE success
probability of

2 X

Py = > cos’ 5 [M +2cos x +sin’ x]
which up to the order 1/M? is given by Py ,~1 — 4(1(;;)2 ~l— 16(]’{,11)2. In figure 3, we find that

|®opi) does substantially better than [W) and even outdoes the unbounded coherent state when
used for MLE.

4, Discussion

The WAY theorem, and related work, put fundamental limitations on the possible physical
processes that quantum mechanics allows in the presence of a conservation law. Here we
have reformulated this fundamental topic in terms of recent concepts coming from quantum
information theory. In doing so, we have formulated a unified way of handling various
scenarios that shed light on the origin of the fundamental constraints, provided a rigorous
account of how optimal limits may be obtained under different criteria, and connected with
the extensive literature on the theory of quantum state discrimination. We have also shown that
any measuring apparatus A naturally subdivides into a resource carrying component R, and a
readout component /C, that initially carries some sharp amount of conserved charge. The theory
of resource asymmetry then provides us with the correct ordering of the set of all measuring
apparatuses and also provides consistent measures for the accounting of internal resources. We
have illustrated the subtleties that can arise, with the most asymmetric states not necessarily
being optimal states for a given protocol.

Within this viewpoint, the Yanase condition can now seen to be a statement that any readout
measurement must fall within the resource theory constraints, and any measurements that do not
obey this condition would imply some hidden asymmetry being smuggled into the accounting.
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One might take foundational issue with the very existence of any asymmetry resources
in Nature, arguing that the full state of the universe must be symmetric under a particular
symmetry group, and so worry that this forbids the types of measurement procedures discussed
in this paper. This turns out to not be an issue since it is perfectly consistent that the
global state is symmetric, yet contains relational asymmetry, where the reduced state on
subsystems transforms non-trivially under the group action. This has previously been explored
in the literature under the heading of protected (virtual) subsystems, both in the theory of
quantum reference frames [12, 18], and the theory of robust, fault-tolerant protection for
quantum information [31]. One could also simply pronounce that some superpositions (such as
charge eigenstates [32]) are fundamentally excluded by superselection rules, however, from the
quantum reference frame perspective there is no essential difference between such an axiomatic
prohibition of charge superposition and the statement that coherent superpositions for atom
numbers are hard to prepare [15, 16, 33]. All superpositions are prepared and defined relative to
a particular reference frame, itself being a physical system, and any superselection rule can be
taken as the empirical statement that we lack an appropriate reference frame state.
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