14,215 research outputs found
Design and development of techniques for fabrication of cryogenic tank support structures for long term storage in space flights Final report
Design optimization and fabrication of conical support structure for cryogenic tank in long duration space fligh
Contextuality under weak assumptions
The presence of contextuality in quantum theory was first highlighted by Bell, Kochen and Specker, who discovered that for quantum systems of three or more dimensions, measurements could not be viewed as deterministically revealing pre-existing properties of the system. More precisely, no model can assign deterministic outcomes to the projectors of a quantum measurement in a way that depends only on the projector and not the context (the full set of projectors) in which it appeared, despite the fact that the Born rule probabilities associated with projectors are independent of the context. A more general, operational definition of contextuality introduced by Spekkens, which we will term "probabilistic contextuality", drops the assumption of determinism and allows for operations other than measurements to be considered contextual. Even two-dimensional quantum mechanics can be shown to be contextual under this generalised notion. Probabilistic noncontextuality represents the postulate that elements of an operational theory that cannot be distinguished from each other based on the statistics of arbitrarily many repeated experiments (they give rise to the same operational probabilities) are ontologically identical. In this paper, we introduce a framework that enables us to distinguish between different noncontextuality assumptions in terms of the relationships between the ontological representations of objects in the theory given a certain relation between their operational representations. This framework can be used to motivate and define a "possibilistic" analogue, encapsulating the idea that elements of an operational theory that cannot be unambiguously distinguished operationally can also not be unambiguously distinguished ontologically. We then prove that possibilistic noncontextuality is equivalent to an alternative notion of noncontextuality proposed by Hardy. Finally, we demonstrate that these weaker noncontextuality assumptions are sufficient to prove alternative versions of known "no-go" theorems that constrain ψ-epistemic models for quantum mechanics
Sudden collapse of a colloidal gel
Metastable gels formed by weakly attractive colloidal particles display a
distinctive two-stage time-dependent settling behavior under their own weight.
Initially a space-spanning network is formed that for a characteristic time,
which we define as the lag time \taud, resists compaction. This solid-like
behavior persists only for a limited time. Gels whose age \tw is greater than
\taud yield and suddenly collapse. We use a combination of confocal
microscopy, rheology and time-lapse video imaging to investigate both the
process of sudden collapse and its microscopic origin in an refractive-index
matched emulsion-polymer system. We show that the height of the gel in the
early stages of collapse is well described by the surprisingly simple
expression, h(\ts) = \h0 - A \ts^{3/2}, with \h0 the initial height and
\ts = \tw-\taud the time counted from the instant where the gel first yields.
We propose that this unexpected result arises because the colloidal network
progressively builds up internal stress as a consequence of localized
rearrangement events which leads ultimately to collapse as thermal equilibrium
is re-established.Comment: 14 pages, 11 figures, final versio
A molecular perspective on the limits of life: Enzymes under pressure
From a purely operational standpoint, the existence of microbes that can grow
under extreme conditions, or "extremophiles", leads to the question of how the
molecules making up these microbes can maintain both their structure and
function. While microbes that live under extremes of temperature have been
heavily studied, those that live under extremes of pressure have been
neglected, in part due to the difficulty of collecting samples and performing
experiments under the ambient conditions of the microbe. However, thermodynamic
arguments imply that the effects of pressure might lead to different organismal
solutions than from the effects of temperature. Observationally, some of these
solutions might be in the condensed matter properties of the intracellular
milieu in addition to genetic modifications of the macromolecules or repair
mechanisms for the macromolecules. Here, the effects of pressure on enzymes,
which are proteins essential for the growth and reproduction of an organism,
and some adaptations against these effects are reviewed and amplified by the
results from molecular dynamics simulations. The aim is to provide biological
background for soft matter studies of these systems under pressure.Comment: 16 pages, 8 figure
Computer numerical control vertical machining centre feed drive modelling using the transmission line technique
This study presents a novel application of the Transmission Line Matrix Method (TLM) for the modelling of the dynamic behaviour of non-linear hybrid systems for CNC machine tool drives. The application of the TLM technique implies the dividing of the ball-screw shaft into a number of identical elements in order to achieve the synchronisation of events in the simulation, and to provide an acceptable resolution according to the maximum frequency of interest. This entails the use of a high performance computing system with due consideration to the small time steps being applied in the simulation. Generally, the analysis of torsion and axial dynamic effects on a shaft implies the development of independent simulated models. This study presents a new procedure for the modelling of a ball-screw shaft by the synchronisation of the axial and torsion dynamics into the same model. The model parameters were obtained with equipments such as laser interferometer, ball bar, electronic levels, signal acquisition systems etc. The MTLM models for single and two-axis configurations have been simulated and matches well with the measured responses of machines. The new modelling approach designated the Modified Transmission Line Method (MTLM) extends the TLM approach retaining all its inherent qualities but gives improved convergence and processing speeds. Further work since, not the subject of this paper, have identified its potential for real time application
Review articles : Extracorporeal membrane oxygenation (ECMO): prolonged bedside cardiopulmonary bypass
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68988/2/10.1177_026765919000500402.pd
Adaptive Measurements in the Optical Quantum Information Laboratory
Adaptive techniques make practical many quantum measurements that would
otherwise be beyond current laboratory capabilities. For example: they allow
discrimination of nonorthogonal states with a probability of error equal to the
Helstrom bound; they allow measurement of the phase of a quantum oscillator
with accuracy approaching (or in some cases attaining) the Heisenberg limit;
and they allow estimation of phase in interferometry with a variance scaling at
the Heisenberg limit, using only single qubit measurement and control. Each of
these examples has close links with quantum information, in particular
experimental optical quantum information: the first is a basic quantum
communication protocol; the second has potential application in linear optical
quantum computing; the third uses an adaptive protocol inspired by the quantum
phase estimation algorithm. We discuss each of these examples, and their
implementation in the laboratory, but concentrate upon the last, which was
published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected
Topics in Quantum Electronics: Quantum Communications and Information Scienc
A comparison of single-cycle versus multiple-cycle proof testing strategies
An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading
Dynamical Arrest in Attractive Colloids: The Effect of Long-Range Repulsion
We study gelation in suspensions of model colloidal particles with
short-ranged attractive and long-ranged repulsive interactions by means of
three-dimensional fluorescence confocal microscopy. At low packing fractions,
particles form stable equilibrium clusters. Upon increasing the packing
fraction the clusters grow in size and become increasingly anisotropic until
finally associating into a fully connected network at gelation. We find a
surprising order in the gel structure. Analysis of spatial and orientational
correlations reveals that the gel is composed of dense chains of particles
constructed from face-sharing tetrahedral clusters. Our findings imply that
dynamical arrest occurs via cluster growth and association.Comment: Final version: Phys. Rev. Lett. 94, 208301 (2005
- …