11,287 research outputs found
Identification of marsh vegetation and coastal land use in ERTS-1 imagery
Coastal vegetation species appearing in the ERTS-1 images taken of Delaware Bay on August 16, and October 10, 1972 have been correlated with ground truth vegetation maps and imagery obtained from high altitude RB-57 and U-2 overflights. The vegetation maps of the entire Delaware Coast were prepared during the summer of 1972 and checked out with ground truth data collected on foot, in small boats, and from low-altitude aircraft. Multispectral analysis of high altitude RB-57 and U-2 photographs indicated that five vegetation communities could be clearly discriminated from 60,000 feet altitude including: (1) salt marsh cord grass, (2) salt marsh hay and spike grass, (3) reed grass, (4) high tide bush and sea myrtle, and (5) a group of fresh water species found in impoundments built to attract water fowl. All of these species are shown in fifteen overlay maps, covering all of Delaware's wetlands prepared to match the USGS topographic map size of 1:24,000
Consistency of shared reference frames should be reexamined
In a recent Letter [G. Chiribella et al., Phys. Rev. Lett. 98, 120501
(2007)], four protocols were proposed to secretly transmit a reference frame.
Here We point out that in these protocols an eavesdropper can change the
transmitted reference frame without being detected, which means the consistency
of the shared reference frames should be reexamined. The way to check the above
consistency is discussed. It is shown that this problem is quite different from
that in previous protocols of quantum cryptography.Comment: 3 pages, 1 figure, comments are welcom
Some Remarks on the Question of Charge Densities in Stationary-Current-Carrying Conductors
Recently, some discussions arose as to the definition of charge and the value
of the density of charge in stationary-current-carrying conductors. We stress
that the problem of charge definition comes from a misunderstanding of the
usual definition. We provide some theoretical elements which suggest that
positive and negative charge densities are equal in the frame of the positive
ions.Comment: 14 pages, TeX, macro newsym.tex include
Plasmon assisted transmission of high dimensional orbital angular momentum entangled state
We present an experimental evidence that high dimensional orbital angular
momentum entanglement of a pair of photons can be survived after a
photon-plasmon-photon conversion. The information of spatial modes can be
coherently transmitted by surface plasmons. This experiment primarily studies
the high dimensional entangled systems based on surface plasmon with
subwavelength structures. It maybe useful in the investigation of spatial mode
properties of surface plasmon assisted transmission through subwavelength hole
arrays.Comment: 7 pages,6 figure
Swift J053041.9-665426, a new Be/X-ray binary pulsar in the Large Magellanic Cloud
We observed the newly discovered X-ray source Swift J053041.9-665426 in the
X-ray and optical regime to confirm its proposed nature as a high mass X-ray
binary. We obtained XMM-Newton and Swift X-ray data, along with optical
observations with the ESO Faint Object Spectrograph, to investigate the
spectral and temporal characteristics of Swift J053041.9-665426. The XMM-Newton
data show coherent X-ray pulsations with a period of 28.77521(10) s (1 sigma).
The X-ray spectrum can be modelled by an absorbed power law with photon index
within the range 0.76 to 0.87. The addition of a black body component increases
the quality of the fit but also leads to strong dependences of the photon
index, black-body temperature and absorption column density. We identified the
only optical counterpart within the error circle of XMM-Newton at an angular
distance of ~0.8 arcsec, which is 2MASS J05304215-6654303. We performed optical
spectroscopy from which we classify the companion as a B0-1.5Ve star. The X-ray
pulsations and long-term variability, as well as the properties of the optical
counterpart, confirm that Swift J053041.9-665426 is a new Be/X-ray binary
pulsar in the Large Magellanic Cloud.Comment: 10 pages, 8 figures, accepted for publication in A&
Discovery of SXP265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud
We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew
survey and archival Swift observations that is located in the transition region
of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We
investigated and classified this source with follow-up XMM-Newton and optical
observations. We model the X-ray spectra and search for periodicities and
variability in the X-ray observations and the OGLE I-band light curve. The
optical counterpart has been classified spectroscopically, with data obtained
at the SAAO 1.9 m telescope, and photometrically, with data obtained using
GROND at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass
X-ray binary with an accreting neutron star. We detect X-ray pulsations, which
reveal a neutron-star spin period of P = (264.516+-0.014) s. The source likely
shows a persistent X-ray luminosity of a few 10^35 erg/s and in addition type-I
outbursts that indicate an orbital period of ~146 d. A periodicity of 0.867 d,
found in the optical light curve, can be explained by non-radial pulsations of
the Be star. We identify the optical counterpart and classify it as a
B1-2II-IVe star. This confirms SXP 265 as a new Be/X-ray binary pulsar
originating in the tidal structure between the Magellanic Clouds.Comment: 11 pages, 12 figures, accepted for publication in MNRA
Learning with a Drifting Target Concept
We study the problem of learning in the presence of a drifting target
concept. Specifically, we provide bounds on the error rate at a given time,
given a learner with access to a history of independent samples labeled
according to a target concept that can change on each round. One of our main
contributions is a refinement of the best previous results for polynomial-time
algorithms for the space of linear separators under a uniform distribution. We
also provide general results for an algorithm capable of adapting to a variable
rate of drift of the target concept. Some of the results also describe an
active learning variant of this setting, and provide bounds on the number of
queries for the labels of points in the sequence sufficient to obtain the
stated bounds on the error rates
Laminar-flow flight experiments
The flight testing conducted over the past 10 years in the NASA laminar-flow control (LFC) will be reviewed. The LFC program was directed towards the most challenging technology application, the high supersonic speed transport. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time
Predictive coupled-cluster isomer orderings for some SiC () clusters; A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks
The accurate determination of the preferred
isomer is important to guide experimental efforts directed towards synthesizing
SiC nano-wires and related polymer structures which are anticipated to be
highly efficient exciton materials for opto-electronic devices. In order to
definitively identify preferred isomeric structures for silicon carbon
nano-clusters, highly accurate geometries, energies and harmonic zero point
energies have been computed using coupled-cluster theory with systematic
extrapolation to the complete basis limit for set of silicon carbon clusters
ranging in size from SiC to . It is found that
post-MBPT(2) correlation energy plays a significant role in obtaining converged
relative isomer energies, suggesting that predictions using low rung density
functional methods will not have adequate accuracy. Utilizing the best
composite coupled-cluster energy that is still computationally feasible,
entailing a 3-4 SCF and CCSD extrapolation with triple- (T) correlation,
the {\it closo} isomer is identified to be the
preferred isomer in support of previous calculations [J. Chem. Phys. 2015, 142,
034303]. Additionally we have investigated more pragmatic approaches to
obtaining accurate silicon carbide isomer energies, including the use of frozen
natural orbital coupled-cluster theory and several rungs of standard and
double-hybrid density functional theory. Frozen natural orbitals as a way to
compute post MBPT(2) correlation energy is found to be an excellent balance
between efficiency and accuracy
Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the Luminous Blue Variable R71
To better understand the LBV phenomenon, we analyze multi-epoch and
multi-wavelength spectra and photometry of R71. Pre-outburst spectra are
analyzed with the radiative transfer code CMFGEN to determine the star's
fundamental stellar parameters. During quiescence, R71 has an effective
temperature of and a luminosity of
log = 5.78 and is thus a classical LBV, but at the lower
luminosity end of this group. We determine its mass-loss rate to yr. We present R71's spectral energy distribution
from the near-ultraviolet to the mid-infrared during its present outburst.
Mid-infrared observations suggest that we are witnessing dust formation and
grain evolution. Semi-regular oscillatory variability in the star's light curve
is observed during the current outburst. Absorption lines develop a second blue
component on a timescale twice that length. The variability may consist of one
(quasi-)periodic component with P ~ 425/850 d with additional variations
superimposed. During its current S Doradus outburst, R71 occupies a region in
the HR diagram at the high-luminosity extension of the Cepheid instability
strip and exhibits similar irregular variations as RV Tau variables. LBVs do
not pass the Cepheid instability strip because of core evolution, but they
develop comparable cool, low-mass, extended atmospheres in which convective
instabilities may occur. As in the case of RV Tau variables, the occurrence of
double absorption lines with an apparent regular cycle may be due to shocks
within the atmosphere and period doubling may explain the factor of two in the
lengths of the photometric and spectroscopic cycles.Comment: 18 pages, 14 figures, submitted to A&
- …