9 research outputs found

    Impact of the Recognition Part of Dipeptidyl Nitroalkene Compounds on the Inhibition Mechanism of Cysteine Proteases Cruzain and Cathepsin L

    Get PDF
    Cysteine proteases (CPs) are an important class of enzymes, many of which are responsible for several human diseases. For instance, cruzain of protozoan parasite Trypanosoma cruzi is responsible for the Chagas disease, while the role of human cathepsin L is associated with some cancers or is a potential target for the treatment of COVID-19. However, despite paramount work carried out during the past years, the compounds that have been proposed so far show limited inhibitory action against these enzymes. We present a study of proposed covalent inhibitors of these two CPs, cruzain and cathepsin L, based on the design, synthesis, kinetic measurements, and QM/MM computational simulations on dipeptidyl nitroalkene compounds. The experimentally determined inhibition data, together with the analysis and the predicted inhibition constants derived from the free energy landscape of the full inhibition process, allowed describing the impact of the recognition part of these compounds and, in particular, the modifications on the P2 site. The designed compounds and, in particular, the one with a bulky group (Trp) at the P2 site show promising in vitro inhibition activities against cruzain and cathepsin L for use as a starting lead compound in the development of drugs with medical applications for the treatment of human diseases and future designs.This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant PGC2021-23332OB-C21), Generalitat Valenciana and the European Regional Funds (Grant PROMETEO CIPROM/2021/079, IDIFEDER/2021/027), and Universitat Jaume I (UJI-B2020-03 and UJI-2021-71). K.A. thanks Generalitat Valenciana (APOSTD/2020/015) for a postdoctoral contract. The authors thankfully acknowledge the local computational resources of the Servei d’Informàtica and Serveis Centrals d’Instrumentació Científica of Universitat Jaume I

    Impact of the Warhead of Dipeptidyl Keto Michael Acceptors on the Inhibition Mechanism of Cysteine Protease Cathepsin L

    Get PDF
    Cathepsin L (CatL) is a lysosomal cysteine protease whose activity has been related to several human pathologies. However, although preclinical trials using CatL inhibitors were promising, clinical trials have been unsuccessful up to now. We are presenting a study of two designed dipeptidyl keto Michael acceptor potential inhibitors of CatL with either a keto vinyl ester or a keto vinyl sulfone (KVS) warhead. The compounds were synthesized and experimentally assayed in vitro, and their inhibition molecular mechanism was explored based on molecular dynamics simulations at the density functional theory/molecular mechanics level. The results confirm that both compounds inhibit CatL in the nanomolar range and show a time-dependent inhibition. Interestingly, despite both presenting almost equivalent equilibrium constants for the reversible formation of the noncovalent enzyme/inhibitor complex, differences are observed in the chemical step corresponding to the enzyme–inhibitor covalent bond formation, results that are mirrored by the computer simulations. Theoretically determined kinetic and thermodynamic results, which are in very good agreement with the experiments, afford a detailed explanation of the relevance of the different structural features of both compounds having a significant impact on enzyme inhibition. The unprecedented binding interactions of both inhibitors in the P1′ site of CatL represent valuable information for the design of inhibitors. In particular, the peptidyl KVS can be used as a starting lead compound in the development of drugs with medical applications for the treatment of cancerous pathologies since sulfone warheads have previously shown promising cell stability compared to other functions such as carboxylic esters. Future improvements can be guided by the atomistic description of the enzyme–inhibitor interactions established along the inhibition reaction derived from computer simulations.Funding for open access charge: CRUE-Universitat Jaume IThis work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (grant PGC2021-23332OB-C21 and PID2019-107098RJ-I00), the Generalitat Valenciana (PROMETEO, with ref CIPROM/2021/079), and Universitat Jaume I (UJI-B2020-03 and UJI-2021-71). A.F.P thanks MINECO for the doctoral FPU grant (FPU AP-2020-03516). K.Ś. thanks the Ministerio de Ciencia e Innovación and Fondo Social Europeo for a Ramon y Cajal contract (ref. RYC2020-030596-I) and a European Cooperation in Science & Technology COST Action (ref CA21101). The authors thankfully acknowledge the computational resources funded by the Spanish Ministry of Science─European Regional Development Fund (REF: EQC2019-006018-P) installed at Universitat Jaume I, the Servei d’Informàtica and Serveis Centrals d’Instrumentació Científica of Universitat Jaume I

    New cysteine protease inhibitors : electrophilic (het)arenes and unexpected prodrug identification for the trypanosoma protease rhodesain

    Get PDF
    Electrophilic (het)arenes can undergo reactions with nucleophiles yielding π- or Meisenheimer (σ-) complexes or the products of the SNAr addition/elimination reactions. Such building blocks have only rarely been employed for the design of enzyme inhibitors. Herein, we demonstrate the combination of a peptidic recognition sequence with such electrophilic (het)arenes to generate highly active inhibitors of disease-relevant proteases. We further elucidate an unexpected mode of action for the trypanosomal protease rhodesain using NMR spectroscopy and mass spectrometry, enzyme kinetics and various types of simulations. After hydrolysis of an ester function in the recognition sequence of a weakly active prodrug inhibitor, the liberated carboxylic acid represents a highly potent inhibitor of rhodesain (Ki = 4.0 nM). The simulations indicate that, after the cleavage of the ester, the carboxylic acid leaves the active site and re-binds to the enzyme in an orientation that allows the formation of a very stable π-complex between the catalytic dyad (Cys-25/His-162) of rhodesain and the electrophilic aromatic moiety. The reversible inhibition mode results because the SNAr reaction, which is found in an alkaline solvent containing a low molecular weight thiol, is hindered within the enzyme due to the presence of the positively charged imidazolium ring of His-162. Comparisons between measured and calculated NMR shifts support this interpretation

    Naphthoquinones as covalent reversible inhibitors of cysteine proteases : studies on inhibition mechanism and kinetics

    Get PDF
    The facile synthesis and detailed investigation of a class of highly potent protease inhibitors based on 1,4-naphthoquinones with a dipeptidic recognition motif (HN-l-Phe-l-Leu-OR) in the 2-position and an electron-withdrawing group (EWG) in the 3-position is presented. One of the compound representatives, namely the acid with EWG = CN and with R = H proved to be a highly potent rhodesain inhibitor with nanomolar affinity. The respective benzyl ester (R = Bn) was found to be hydrolyzed by the target enzyme itself yielding the free acid. Detailed kinetic and mass spectrometry studies revealed a reversible covalent binding mode. Theoretical calculations with different density functionals (DFT) as well as wavefunction-based approaches were performed to elucidate the mode of action

    Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A

    No full text
    Staphylococcus aureus is one of the most frequent causes of nosocomial and community‐acquired infections, with drug‐resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active‐site cysteine. A broad series of derivatives were synthesized to derive structure‐activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single‐digit micromolar Ki values and caused up to a 66 % reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase‐mediated adherence of S. aureus cells

    Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus

    No full text
    Staphylococcus aureus is one of the most frequent causes of nosocomial and community‐acquired infections, with drug‐resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active‐site cysteine. A broad series of derivatives were synthesized to derive structure‐activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single‐digit micromolar Ki values and caused up to a 66 % reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase‐mediated adherence of S. aureus cells

    Naphthoquinones as covalent reversible inhibitors of cysteine proteases-studies on inhibition mechanism and kinetics

    Get PDF
    The facile synthesis and detailed investigation of a class of highly potent protease inhibitors based on 1,4-naphthoquinones with a dipeptidic recognition motif (HN-l-Phe-l-Leu-OR) in the 2-position and an electron-withdrawing group (EWG) in the 3-position is presented. One of the compound representatives, namely the acid with EWG = CN and with R = H proved to be a highly potent rhodesain inhibitor with nanomolar affinity. The respective benzyl ester (R = Bn) was found to be hydrolyzed by the target enzyme itself yielding the free acid. Detailed kinetic and mass spectrometry studies revealed a reversible covalent binding mode. Theoretical calculations with different density functionals (DFT) as well as wavefunction-based approaches were performed to elucidate the mode of action
    corecore