14,600 research outputs found
A simple remark on a flat projective morphism with a Calabi-Yau fiber
If a K3 surface is a fiber of a flat projective morphisms over a connected
noetherian scheme over the complex number field, then any smooth connected
fiber is also a K3 surface. Observing this, Professor Nam-Hoon Lee asked if the
same is true for higher dimensional Calabi-Yau fibers. We shall give an
explicit negative answer to his question as well as a proof of his initial
observation.Comment: 8 pages, main theorem is generalized, one more remark is added,
mis-calculation and typos are corrected etc
Quantum versus classical phase-locking transition in a driven-chirped oscillator
Classical and quantum-mechanical phase locking transition in a nonlinear
oscillator driven by a chirped frequency perturbation is discussed. Different
limits are analyzed in terms of the dimensionless parameters and
( and being the driving amplitude,
the frequency chirp rate, the nonlinearity parameter and the linear frequency
of the oscillator). It is shown that for , the passage
through the linear resonance for above a threshold yields classical
autoresonance (AR) in the system, even when starting in a quantum ground state.
In contrast, for , the transition involves
quantum-mechanical energy ladder climbing (LC). The threshold for the
phase-locking transition and its width in in both AR and LC limits are
calculated. The theoretical results are tested by solving the Schrodinger
equation in the energy basis and illustrated via the Wigner function in phase
space
Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): set-up and meteorological evaluation
The configuration and evaluation of the meteorology is presented for simulations over the South Asian region using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Temperature, water vapor, dew point temperature, zonal and meridional wind components, precipitation and tropopause pressure are evaluated against radiosonde and satellite-borne (AIRS and TRMM) observations along with NCEP/NCAR reanalysis fields for the year 2008. Chemical fields, with focus on tropospheric ozone, are evaluated in a companion paper. The spatial and temporal variability in meteorological variables is well simulated by the model with temperature, dew point temperature and precipitation showing higher values during summer/monsoon and lower during winter. The index of agreement for all the parameters is estimated to be greater than 0.6 indicating that WRF-Chem is capable of simulating the variations around the observed mean. The mean bias (MB) and root mean square error (RMSE) in modeled temperature, water vapor and wind components show an increasing tendency with altitude. MB and RMSE values are within &pm;2 K and 1–4 K for temperature, 30% and 20–65% for water vapor and 1.6 m s<sup>−1</sup> and 5.1 m s<sup>−1</sup> for wind components. The spatio-temporal variability of precipitation is also reproduced reasonably well by the model but the model overestimates precipitation in summer and underestimates precipitation during other seasons. Such a behavior of modeled precipitation is in agreement with previous studies on South Asian monsoon. The comparison with radiosonde observations indicates a relatively better model performance for inland sites as compared to coastal and island sites. The MB and RMSE in tropopause pressure are estimated to be less than 25 hPa. Sensitivity simulations show that biases in meteorological simulations can introduce errors of &pm;(10–25%) in simulations of tropospheric ozone, CO and NO<sub>x</sub>. Nevertheless, a comparison of statistical metrics with benchmarks indicates that the model simulated meteorology is of sufficient quality for use in chemistry simulations
The Voluntary Adjustment of Railroad Obligations
Automatic memory management techniques eliminate many programming errors that are both hard to find and to correct. However, these techniques are not yet used in embedded systems with hard realtime applications. The reason is that current methods for automatic memory management have a number of drawbacks. The two major ones are: (1) not being able to always guarantee short real-time deadlines and (2) using large amounts of extra memory. Memory is usually a scarce resource in embedded applications. In this paper we present a new technique, Real-Time Reference Counting (RTRC) that overcomes the current problems and makes automatic memory management attractive also for hard real-time applications. The main contribution of RTRC is that often all memory can be used to store live objects. This should be compared to a memory overhead of about 500% for garbage collectors based on copying techniques and about 50% for garbage collectors based on mark-and-sweep techniques
Planar L-Drawings of Directed Graphs
We study planar drawings of directed graphs in the L-drawing standard. We
provide necessary conditions for the existence of these drawings and show that
testing for the existence of a planar L-drawing is an NP-complete problem.
Motivated by this result, we focus on upward-planar L-drawings. We show that
directed st-graphs admitting an upward- (resp. upward-rightward-) planar
L-drawing are exactly those admitting a bitonic (resp. monotonically
increasing) st-ordering. We give a linear-time algorithm that computes a
bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or
reports that there exists none.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Chalcogen Height Dependence of Magnetism and Fermiology in FeTe_xSe_{1-x}
FeTexSe1-x (x=0, 0.25, 0.50, 0.75 and 1) system has been studied using
density functional theory. Our results show that for FeSe, LDA seems better
approximation in terms of magnitude of magnetic energy whereas GGA
overestimates it largely. On the other hand for FeTe, GGA is better
approximation that gives experimentally observed magnetic state. It has been
shown that the height of chalcogen atoms above Fe layers has significant effect
on band structure, electronic density of states (DOS) at Fermi level N(EF) and
Fermi surfaces. For FeSe the value of N(EF) is small so as to satisfy Stoner
criteria for ferromagnetism, (I\timesN(EF)\geq1) whereas for FeTe, since the
value of N(EF) is large, the same is close to be satisfied. Force minimization
done for FeTexSe1-x using supercell approach shows that in disordered system Se
and Te do not share same site and have two distinct z coordinates. This has
small effect on magnetic energy but no significant difference in band structure
and DOS near EF when calculated using either relaxed or average value of z for
chalcogen atoms. Thus substitution of Se at Te site decreases average value of
chalcogen height above Fe layers which in turn affect the magnetism and
Fermiology in the system. By using coherent-potential approximation for
disordered system we found that height of chalcogen atoms above Fe layer rather
than chalcogen species or disorder in the anion planes, affect magnetism and
shape of Fermi surfaces (FS), thus significantly altering nesting conditions,
which govern antiferromagnetic spin fluctuations in the system.Comment: 24 pages Text+Figs: comments/suggestions welcome
([email protected]
Anomalous transport properties of the halfmetallic ferromagnets Co2TiSi, Co2TiGe, and Co2TiSn
In this work the theoretical and experimental investigations of Co2TiZ (Z =
Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is
predicted for all three compounds with only two bands crossing the Fermi energy
in the majority channel. The magnetic moments fulfill the Slater-Pauling rule
and the Curie temperatures are well above room temperature. All compounds show
a metallic like resistivity for low temperatures up to their Curie temperature,
above the resistivity changes to semiconducting like behavior. A large negative
magnetoresistance of 55% is observed for Co2TiSn at room temperature in an
applied magnetic field of 4T which is comparable to the large negative
magnetoresistances of the manganites. The Seebeck coefficients are negative for
all three compounds and reach their maximum values at their respective Curie
temperatures and stay almost constant up to 950 K. The highest value achieved
is -52muV/K m for Co2TiSn which is large for a metal. The combination of
half-metallicity and the constant large Seebeck coefficient over a wide
temperature range makes these compounds interesting materials for
thermoelectric applications and further spincaloric investigations.Comment: 4 pages 4 figure
Efficient total energy calculations from self-energy models
We propose a new method for calculating total energies of systems of interacting electrons, which requires little more computational resources than standard density-functional theories. The total energy is calculated within the framework of many-body perturbation theory by using an efficient model of the self-energy, that nevertheless retains the main features of the exact operator. The method shows promising performance when tested against quantum Monte Carlo results for the linear response of the homogeneous electron gas and structural properties of bulk silicon
Galactic microwave emission at degree angular scales
We cross-correlate the Saskatoon Ka and Q-Band Cosmic Microwave Background
(CMB) data with different maps to quantify possible foreground contamination.
We detect a marginal correlation (2 sigma) with the Diffuse Infrared Background
Experiment (DIRBE) 240, 140 and 100 microm maps, but we find no significant
correlation with point sources, with the Haslam 408 MHz map or with the Reich
and Reich 1420 MHz map. The rms amplitude of the component correlated with
DIRBE is about 20% of the CMB signal. Interpreting this component as free-free
emission, this normalization agrees with that of Kogut et al. (1996a; 1996b)
and supports the hypothesis that the spatial correlation between dust and warm
ionized gas observed on large angular scales persists to smaller angular
scales. Subtracting this contribution from the CMB data reduces the
normalization of the Saskatoon power spectrum by only a few percent.Comment: Minor revisions to match published version. 14 pages, with 2 figures
included. Color figure and links at
http://www.sns.ias.edu/~angelica/foreground.htm
- …