321 research outputs found
Complete S-matrix in a microwave cavity at room temperature
We experimentally study the widths of resonances in a two-dimensional
microwave cavity at room temperature. By developing a model for the coupling
antennas, we are able to discriminate their contribution from those of ohmic
losses to the broadening of resonances. Concerning ohmic losses, we
experimentally put to evidence two mechanisms: damping along propagation and
absorption at the contour, the latter being responsible for variations of
widths from mode to mode due to its dependence on the spatial distribution of
the field at the contour. A theory, based on an S-matrix formalism, is given
for these variations. It is successfully validated through measurements of
several hundreds of resonances in a rectangular cavity.Comment: submitted to PR
Arrival Time Statistics in Global Disease Spread
Metapopulation models describing cities with different populations coupled by
the travel of individuals are of great importance in the understanding of
disease spread on a large scale. An important example is the Rvachev-Longini
model [{\it Math. Biosci.} {\bf 75}, 3-22 (1985)] which is widely used in
computational epidemiology. Few analytical results are however available and in
particular little is known about paths followed by epidemics and disease
arrival times. We study the arrival time of a disease in a city as a function
of the starting seed of the epidemics. We propose an analytical Ansatz, test it
in the case of a spreading on the world wide air transportation network, and
show that it predicts accurately the arrival order of a disease in world-wide
cities
Velocity and hierarchical spread of epidemic outbreaks in scale-free networks
We study the effect of the connectivity pattern of complex networks on the
propagation dynamics of epidemics. The growth time scale of outbreaks is
inversely proportional to the network degree fluctuations, signaling that
epidemics spread almost instantaneously in networks with scale-free degree
distributions. This feature is associated with an epidemic propagation that
follows a precise hierarchical dynamics. Once the highly connected hubs are
reached, the infection pervades the network in a progressive cascade across
smaller degree classes. The present results are relevant for the development of
adaptive containment strategies.Comment: 4 pages, 4 figures, final versio
Epidemic variability in complex networks
We study numerically the variability of the outbreak of diseases on complex
networks. We use a SI model to simulate the disease spreading at short times,
in homogeneous and in scale-free networks. In both cases, we study the effect
of initial conditions on the epidemic's dynamics and its variability. The
results display a time regime during which the prevalence exhibits a large
sensitivity to noise. We also investigate the dependence of the infection time
on nodes' degree and distance to the seed. In particular, we show that the
infection time of hubs have large fluctuations which limit their reliability as
early-detection stations. Finally, we discuss the effect of the multiplicity of
shortest paths between two nodes on the infection time. Furthermore, we
demonstrate that the existence of even longer paths reduces the average
infection time. These different results could be of use for the design of
time-dependent containment strategies
Conception optimale des cellules de fabrication flexibles basée sur l'approche par réseaux de neurones
Cette thèse propose une heuristique hybride de résolution des problèmes de formation cellulaire. Notre approche en trois étapes s'amorce par la sélection du meilleur cheminement de fabrication en mettant l'accent sur la minimisation des coûts opérationnels. La seconde phase forme les ateliers de fabrication en utilisant un réseau de neurones de type Hopfield quantifié et fluctuant jumelé à une méthode d'optimisation locale représentée par « la recherche avec les tabous ». L'ultime phase de cette heuristique fut centrée sur la réduction ou l'élimination des transferts intercellulaires par la mise en place d'un équilibre entre maintenir les transferts, dédoubler les machines permettant ces transferts et recourir à la sous-traitance. Sur la base des simulations réalisées, nous obtenons des solutions réalisables 100% du temps alors que les meilleures dispositions sont déterminées 68 fois sur 100. De plus, notre approche est, en moyenne, 22 à 30 fois plus rapide qu'un réseau de Hopfield classiques dont les neurones prennent des valeurs discrètes ou continues
Vulnerability of weighted networks
In real networks complex topological features are often associated with a
diversity of interactions as measured by the weights of the links. Moreover,
spatial constraints may as well play an important role, resulting in a complex
interplay between topology, weight, and geography. In order to study the
vulnerability of such networks to intentional attacks, these attributes must be
therefore considered along with the topological quantities. In order to tackle
this issue, we consider the case of the world-wide airport network, which is a
weighted heterogeneous network whose evolution and structure are influenced by
traffic and geographical constraints. We first characterize relevant
topological and weighted centrality measures and then use these quantities as
selection criteria for the removal of vertices. We consider different attack
strategies and different measures of the damage achieved in the network. The
analysis of weighted properties shows that centrality driven attacks are
capable to shatter the network's communication or transport properties even at
very low level of damage in the connectivity pattern. The inclusion of weight
and traffic therefore provides evidence for the extreme vulnerability of
complex networks to any targeted strategy and need to be considered as key
features in the finding and development of defensive strategies
Co-evolution of density and topology in a simple model of city formation
We study the influence that population density and the road network have on
each others' growth and evolution. We use a simple model of formation and
evolution of city roads which reproduces the most important empirical features
of street networks in cities. Within this framework, we explicitely introduce
the topology of the road network and analyze how it evolves and interact with
the evolution of population density. We show that accessibility issues -pushing
individuals to get closer to high centrality nodes- lead to high density
regions and the appearance of densely populated centers. In particular, this
model reproduces the empirical fact that the density profile decreases
exponentially from a core district. In this simplified model, the size of the
core district depends on the relative importance of transportation and rent
costs.Comment: 13 pages, 13 figure
- …