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Metapopulation models describing cities with different populations coupled by the travel of in-
dividuals are of great importance in the understanding of disease spread on a large scale. An
important example is the Rvachev-Longini model [Math. Biosci. 75, 3-22 (1985)] which is widely
used in computational epidemiology. Few analytical results are however available and in particular
little is known about paths followed by epidemics and disease arrival times. We study the arrival
time of a disease in a city as a function of the starting seed of the epidemics. We propose an ana-
lytical Ansatz, test it in the case of a spreading on the world wide air transportation network, and
show that it predicts accurately the arrival order of a disease in world-wide cities.

PACS numbers: 89.75.-k, -87.23.Ge, 05.40.-a

In modern societies, individuals can easily travel over a
wide range of spatial and temporal scales. The intercon-
nections of areas and populations through various means
of transport have important effects on the geographical
spread of epidemics. In particular, the structure and
the different complexity levels of the air-transportation
network are responsible for the heterogeneous and seem-
ingly erratic outbreak patterns observed in the worldwide
propagation of diseases [1] as recently documented for
SARS [2, 3]. In order to describe such a complex phe-
nomenon and to obtain powerful numerical forecasting
tools, different levels of description are possible, ranging
from a simple global mean-field to detailed agent-based
simulations [4, 5, 6, 7, 8, 9, 10] that recreate entire pop-
ulations and their dynamics at the scale of the single
individual [10].

At large scale, such as the world-wide level, a very im-
portant class of models in modern epidemiology are the
so-called metapopulation models which use a description
at two levels by dividing the global population into inter-
connected subpopulations. Within each subpopulation,
a mean-field like model of epidemic spreading is used,
while the spread from one subpopulation to another is
due to the travel of individuals. Agents of each subpopu-
lation can be in various states (healthy, infectious, recov-
ered...), change state by contact with other agents, and
diffuse on the transportation network between subpopu-
lations. Metapopulation models can thus be considered
as reaction-diffusion processes, which opens very interest-
ing perspectives and issues [11] within the global frame-
work of dynamical phenomena occurring on complex net-
works [12, 13, 14, 15]. For the description of worldwide
epidemic spreading, the subpopulations are cities con-
nected by a transportation network in which links corre-
spond to the existence of passenger flows described by the
worldwide air-transportation network (WAN). The WAN
represents a major channel for the worldwide spread of
infectious diseases [1, 3] and its complex, heterogeneous
features at various levels (degree distribution, traffic,

populations) have recently been characterized [16, 17].
In this Letter, we focus, in the framework of such

metapopulation models, on the issue of the arrival time
in a city of the first infectious individual. In particular,
we study how this time depends on the origin of the dis-
ease and on the network characteristics. This problem is
more complex than the one of random walks on complex
networks [18], since the number of infectious individuals
diffusing on the network is constantly evolving due to the
inner-city epidemic dynamics. We also note that refer-
ences [19, 20] were also concerned with the arrival time
problem for an epidemic spreading on a complex network,
but in a different framework: each network node was an
individual (susceptible or infectious), while in our case
each node represents a whole subpopulation. After the
precise definition of the model, we will first consider the
simple case of a one-dimensional topology for the trans-
portation network in order to gain analytical insights into
this problem. This will allow us to propose an analyti-
cal form for the arrival time in arbitrary networks. We
then test this form in the case of the WAN, by simulat-
ing numerically a stochastic spreading phenomenon on
the network, and show that we can indeed predict with a
good accuracy the spreading phenomenon and the arrival
order of a disease in various cities at a world-wide level.

While the precise model describing the epidemic
spreading at the subpopulation level could be refined
at will in order to describe a particular disease, we are
here interested in generic and fundamental aspects of the
metapopulation modeling approach. We therefore re-
strict our study to a simple SI disease model in which
individuals are either healthy (susceptible, S) or can be-
come infectious (I) if in contact with an infectious in-
dividual. The Rvachev-Longini SI model [21] describes
the evolution of the number of infectious Ii(t) individuals
(and also of Si(t)) in each city i through

∂tIi = K({Xi}) + Ω({Ij}) , (1)

where the first term K of the right hand side describes
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the (epidemic) reaction process inside each subpopula-
tion (city), due to the interaction of individuals in the
various possible states. In our case X ∈ {S, I} (we
have checked that more involved models, such as SIS
or SIR, give consistent results [22]) and the standard
homogeneous mixing assumption in each city gives [4]:
K({Xi}) = λIi(Ni − Ii)/Ni, where Ni is the population
of city i and λ the spreading rate. The second term Ω
represents the evolution due to the arrival or departure of
infectious individuals from or to other cities and is deter-
mined by passenger flows on the transportation network.
This model therefore considers a simplified mechanistic
approach with a widely used markovian assumption in
which individuals are not labeled according to their orig-
inal subpopulation, and at each time step the same trav-
eling probability applies to all individuals in the subpop-
ulation, without memory of their origin [1, 3, 21]. De-
noting by wij the average number of passengers traveling
from i to j per unit of time (wij = 0 if there is no direct
connection), the probability per unit time that an indi-
vidual travels from city i to city j is then given by wij/Ni.
The full metapopulation model is therefore described by

∂tIi = λIi(t)
Ni − Ii(t)

Ni
+

∑

j

wji

Nj
Ij −

∑

j

wij

Ni
Ii . (2)

This original formulation considers only expectation val-
ues, which can take continuous values, so that “fractions”
of infectious individuals can travel and infect neighboring
cities arbitrarily fast [23]. To investigate arrival times,
one therefore needs to take into account the inherent
stochasticity of the spreading. We thus consider in all
our numerical simulations the stochastic generalization
described in [1, 3] where the number of individuals trav-
eling on each connection is an integer variable randomly
extracted at each time step of length ∆t, with average
∆twijIi/Ni (in the numerical simulations we will use
∆t = 1 day); for simplicity we keep the endogenous
growth deterministic since we are mainly concerned with
the effect of travel, but we have checked that inclusion of
stochastic effects as in [1] do not change our results [22].
Note that in real cases such as the WAN, most weights
are symmetric (wij = wji) [16] but the probabilities of
travel from one city to another are not since they depend
on the populations of the various cities: the travel effec-
tively occurs as a random diffusion with non-symmetric
rates on the transportation network. The topological dis-
tance thus does not contain all the information needed to
characterize such a process. Moreover, since most trans-
portation networks are small-world networks, many cities
lie at the same topological distance from a given seed, but
will potentially be reached at very different times.

Before turning to numerical simulations of the de-
scribed model, we present an analytical approach to the
determination of arrival times. Let us first consider the
simple case of two cities (0 and 1), with populations N0,
N1 which are connected by a passenger flux w01 = w. We
assume that at t = 0, there are I0 = 1 infectious people
in the city 0. Let us first consider that the travel events

occur as instantaneous jumps of probability p = w
N0

∆t,
at discretized times, in units of ∆t. The probability that
the time of arrival t1 of the epidemic in the city 1 is equal
to t = n∆t is then

Pd(t1 = n∆t) =
[

1 − (1 − p)I0(n∆t)
]

n−1
∏

i=1

(1 − p)I0(i∆t) .

(3)
In order to obtain the density probability P (t) of the
arrival time in the city 1 we consider the limit ∆t → 0,
using the following assumptions: (i) I0(t) ≪ N , which is
realistic for usual diseases, in which only small fractions
of the population are infectious; (ii) the continuous limit
for I0(t) can be used which reads 1

λ ≪ 〈t1〉. Within these
assumptions, we obtain

P (t)dt =
w

N0
eλt− w

N0λ
eλt

dt (4)

(the last assumption then reads 1 ≪ ln(N0λ
w )). We

recognize in (4) a Gumbel distribution with average
〈t1〉 = 1

λ [ln(N0λ
w ) − γ], where γ is the Euler constant.

The variance is V ar(t1) = π√
6λ

and does not depend of
w
N0

(the non physical contribution of the negative val-
ues of t in the distribution has to be negligible which is

satisfied if
∫ 0

−∞ P (t)dt = w
N0λ ≪ 1). Within these as-

sumptions, we obtain a good agreement between results
of numerical simulations using discretized travel events
[1] and the theory which uses continuous approximations
(see Fig. 1).
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FIG. 1: Two cities model. Arrival time t1 distribution com-
puted by numerical simulation and compared with the result
of Eq. (4) for w

N0λ
= 10−2 (line). Inset : Same for w

N0λ
= 10−1.

We now consider the case of a one-dimensional line
of cities connected by passenger fluxes of random inten-
sity. We assume that the spreading process starts at
city 0 and we denote by tn the arrival time in the city
n. The quantities having the same unit as tn are 1/λ
and Ni/wi, where wi is the number of passengers travel-
ing from i to i + 1 per unit time. Dimensional analysis
then implies that the probability distribution of the adi-
mensional quantity λtn must be a function of the other
adimensional quantities which are the wi/(lambdaNi):
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P (λtn) = Gn(λtn, { wi

Niλ
}), where Gn is an unknown func-

tion. One can write tn as a sum of random variables,
∆i = ti − ti−1 which are however correlated since each
local infection process depends on the history of the epi-
demics in all previously infected cities. While a complete
study of P (λtn) is left for future work [22], numerical
simulations of the spreading show (Fig. 2) that it obeys
important invariance properties. For heterogeneous pop-
ulations and travels (wi and Ni are distributed uniformly
in [10, 2000] and [105, 2.107], respectively), the whole dis-
tribution is invariant when one replaces (i) all the random

weights by their geometrical mean w = (
∏n−1

i=0 wi)
1/n; (ii)

all the random populations by their geometrical mean
N = (

∏n−1
i=0 Ni)

1/n; (iii) all weights by w and all popu-

lations by N . The ratios of the average times for these
different sets stay very close to 1, with deviations at most
of the order of 5%.

The average arrival time can thus be written as λ〈tn〉 =
F ({ wi

Niλ
}) where F (x1, . . . , xn) is a symmetric function of

its variables which depends only on the product
∏

xi, and
such that 〈t1〉 is the average of the Gumbel distribution
(4). This leads to the following Ansatz

λ〈tn〉 ≈ χ(n) ≡ ln

[

n−1
∏

i=0

Niλe−γ

wi

]

. (5)

400 500
0

0.01

0.02

P(
t 7=

t)

400 500
t

500 600

A) B) C)

FIG. 2: (A-C) Arrival time distribution on a line at city #7,
from numerical simulations for a fixed random set of popu-
lations {Ni} and weights {wi} (Black circles). Red crosses:
distributions for (A) uniform travel wi = w̄, and populations
{Ni}; (B) uniform populations Ni = N̄ , and weights {wi};
(C) uniform populations Ni = N̄ and weights wi = w̄. We
use a small value of n since most real complex networks are
small-world: any node lies at a small distance from the seed.

Figure 3 shows that the average arrival time in a city is
indeed determined by χ to a very good extent (while the
arrival time at a given topological distance from the seed
can vary a lot). More quantitatively, χ is approximately
proportional to λ〈t〉, which it slightly overestimates since
we neglect the flow of infectious individuals from n − 2
to n− 1 with respect to the endogenous increase of In−1

during [tn−1; tn] [22].
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FIG. 3: λ〈tn〉 vs. χ(n) for 5 cities connected on a line, with
100 different random sets {wi, Ni}. Each point is an average
over 1, 000 epidemics for each realization of the w’s.

We now consider a generic transportation network be-
tween the cities. The quantity (5) can easily be com-
puted on any path of length n on the network. While
the spread can a priori follow multiple paths from one
city to another, we can reasonably assume that the most
probable path is the one which minimizes the value of χ
computed on it, leading to the smallest arrival time pos-
sible (a more refined Ansatz taking into account multiple
paths does not lead to strong differences in the final re-
sults [22]). We thus obtain the following Ansatz for the
arrival time at a city t of a disease starting at node s

χ(s, t) = min
{Pst}

∑

(k,l)∈Pst

[

ln

(

Nkλ

wkl

)

− γ

]

(6)

where {Psj} is the set of all possible paths connecting s
to t, and the sum is over the links (k, l) on the paths. In
other terms, we have introduced a new (non symmetric)
weight ln(Niλ/wij)− γ on each oriented link (i, j) of the
network.

We have simulated, using the model developed in [1],
and summarized above, a spreading phenomenon on a
subnetwork of the WAN, composed of the 2, 400 nodes for
which the populations are larger than 10, 000 inhabitants
and which corresponds to 98% of the total traffic [24].
The arrival times are computed by solving numerically
the equations of the Rvachev-Longini model with dis-
cretized random travel events, and averaging over 1, 000
realizations of the spreading with the same seed (one
infectious individual in a given city). Figure 4 shows
the obtained values of λ〈t〉 versus χ for various initial
seeds. We observe that the average arrival time is indeed
determined by the value of χ in a given city: various
cities with the same χ are reached at the same time by
the disease propagation. While χ quantitatively overesti-
mates the arrival time, the two quantities are correlated
strongly enough, in order to obtain with a good confi-
dence the order of arrival of the disease in different cities.
More precisely, if we denote ∆χ(i, j) =| χ(j) − χ(i) |,
we show in Fig. 5 the probability fc(∆χ) that the ar-
rival times in one realization of the spread t(i) and t(j)
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FIG. 4: (Color online) λ〈t〉 versus χ on the WAN for diseases
starting in different cities (whose name is specified in each
graph). Each red circle corresponds to a city and averages
are done over 1, 000 realizations of the spreading. Crosses are
an average over cities with the same χ. When the initial seed
is a hub, the average arrival time is larger than χ in the first
reached cities, due to the multiplicity of possible paths [22].
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FIG. 5: Fraction of couples of nodes correctly ranked as a
function of their ∆χ (circles), in each realization of the spread,
and cumulative distribution (squares) of the values of ∆χ (i.e.,
fraction of couples of cities (i, j) with ∆χ(i, j) > ∆χ).

follow the same order as given by χ(i) and χ(j) [ie.
(t(i) − t(j))(χ(i) − χ(j)) > 0]. In other words, fc is
the probability that the disease arrival rank for the two
cities i and j is correctly predicted by χ. If ∆χ(i, j) is
equal to 0, no prediction is possible and we indeed obtain
fc(0) = 0.5. For ∆χ > 10, almost all node couples are
correctly ranked. This result has however to be weighted
by the number of couples with such a large ∆χ. We
thus plot on the same figure the cumulative distribution
p>(∆χ) of the number of couples of nodes with a given
value of ∆χ. We see for example that approximately 80%
of the couples of cities have a ∆χ > 2 and more than 70%
of these couples are correctly sorted (instead of just 50%
on average if no information is available).

From a theoretical point of view, metapopulation mod-
els go far beyond classical random walks and deserve
many further theoretical investigations. In this Letter,
we have proposed an Ansatz for the arrival time of a dis-
ease in a city, knowing the starting point of the spread.
This Ansatz is a good approximation and predicts with
accuracy the arrival order of the disease in the different
cities, even if they are at the same topological distance
from the seed [22]. Containment strategies could use such
information to target the cities most at risk of rapid infec-
tion, and therefore deploy limited supplies of vaccine or
antivirals in an efficient way. Further developments could
include more sophisticated compartmental or metapopu-
lation models, and the systematic investigation of various
structures of complex networks [22]. Finally, it would be
interesting to extend this study to other scales, like the
urban scale, where nodes are locations such as homes,
offices or malls [10].
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[20] P. Crépey, F. P. Alvarez and M. Barthélemy, Phys Rev
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