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Vulnerability of weighted networks

Luca Dall’Asta,1 Alain Barrat,1 Marc Barthélemy,2, 3 and Alessandro Vespignani2
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In real networks complex topological features are often associated with a diversity of interactions
as measured by the weights of the links. Moreover, spatial constraints may as well play an important
role, resulting in a complex interplay between topology, weight, and geography. In order to study the
vulnerability of such networks to intentional attacks, these attributes must be therefore considered
along with the topological quantities. In order to tackle this issue, we consider the case of the world-
wide airport network, which is a weighted heterogeneous network whose evolution and structure are
influenced by traffic and geographical constraints. We first characterize relevant topological and
weighted centrality measures and then use these quantities as selection criteria for the removal of
vertices. We consider different attack strategies and different measures of the damage achieved in
the network. The analysis of weighted properties shows that centrality driven attacks are capable
to shatter the network’s communication or transport properties even at very low level of damage
in the connectivity pattern. The inclusion of weight and traffic therefore provides evidence for the
extreme vulnerability of complex networks to any targeted strategy and need to be considered as
key features in the finding and development of defensive strategies.

PACS numbers:

I. INTRODUCTION

The network representation applies to large commu-
nication infrastructure (Internet, e-mail networks, the
World-Wide-Web), transportation networks (railroads,
airline routes), biological systems (gene and/or protein
interaction networks) and to a variety of social interac-
tion structures [1, 2, 3, 4]. Very interestingly, many real
networks share a certain number of topological proper-
ties. For example, most networks are small-worlds [5]:
the average topological distance between nodes increases
very slowly (logarithmically or even slower) with the
number of nodes. Additionally, “hubs” [nodes with very
large degree k compared to the mean of the degree distri-
bution P (k)] are often encountered. More precisely, the
degree distributions exhibit in many cases heavy-tails of-
ten well approximated for a significant range of values
of degree k by a power-law behavior (P (k) ∼ k−γ) [1, 2]
from which the name scale-free networks originated. Real
networks are however not only specified by their topol-
ogy, but also by the dynamical properties of processes
taking place on them, such as the flow of information or
the traffic among the constituent units of the system. In
order to account for these features, the edges are endowed
with weights: for example, the air-transportation system
can be represented by a weighted network, in which the
vertices are commercial airports and the edges are non-
stop passenger flights. In this context, a natural defini-
tion of link weights arises, as the capacity (in terms of
number of passengers) of the corresponding flight. Data
about real weighted networks (communication and in-
frastructure networks, scientific collaboration networks,
metabolic networks, etc.) have been recently studied,

giving particular attention to the relation between weight
properties and topological quantities [6, 7, 8]. These find-
ings have also generated several studies concerning mod-
eling approaches in which the mutual influence of weights
and topology plays an explicit role in determining net-
work’s properties [9, 10, 11, 12, 13].

One of the most striking effects of the complex
topological features of networks concerns their vulner-
ability to attacks and random failures. Compared to
“regular” d-dimensional lattices and random graphs with
a bounded degree distribution, heavy-tailed networks
can tolerate very high levels of random failure [14, 15].
On the other hand, malicious attacks on the hubs can
swiftly break the entire network into small components,
providing a clear identification of the elements which
need the highest level of protection against such attacks
[16, 17]. In this context it is therefore important to
study how the introduction of traffic and geographical
properties may alter or confirm the above findings. In
particular we are interested in two main questions: (i)
which measures are best suited to assess the damage suf-
fered by weighted networks and to characterize the most
effective attack (protection) strategies; (ii) how traffic
and spatial constraints influence the system’s robustness.
In this article, our attention is therefore focused on
weighted networks with geographical embedding and
we analyze the structural vulnerability with respect to
various centrality-driven attack strategies. In particular,
we propose a series of topological and weight-depending
centrality measures that can be used to identify the most
important vertices of a weighted network. The traffic
integrity of the whole network depends on the protection
of these central nodes and we apply these considerations
to a typical case study, namely the world-wide airport
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network. We find that weighted networks are even more
vulnerable than expected in that the traffic integrity
is destroyed when the topological integrity of the
network is still extremely high. In addition all attacks
strategies, both local and non-local perform with almost
the same efficacy. The present findings may help in
providing a quantitative assessment of the most vulner-
able elements of the network and the development of
adaptive reactions aimed at contrasting targeted attacks.

II. NETWORK DATA SET

In the following we use the world-wide air-
transportation network (WAN), built from the In-
ternational Air Transportation Association database
(www.iata.org). This database contains the direct flight
schedules and available seats data from the vast major-
ity of the world’s airlines for the year 2002. The network
obtained from the IATA database contains N = 3, 880 in-
terconnected airports (vertices) and 18, 810 direct flight
connections (edges). This corresponds to an average de-
gree of 〈k〉 = 9.7, while the maximal one is kmax = 318
showing a strong heterogeneity of the degrees. This is
confirmed by the fact that the degree distribution can be
described by the functional form P (k) ∼ k−γf(k/kc),
where γ ≃ 2.0 and f(k/kc) is an exponential cut-off
which finds its origin in physical constraints on the max-
imum number of connections that can be handled by a
single airport [18, 19]. The WAN is a small-world: the
average shortest path length, measured as the average
number of edges separating any two nodes in the net-
work, is 〈ℓ〉 = 4.4. The data contained in the IATA
database allow to go beyond the simple topological rep-
resentation of the airports connections by obtaining a
weighted graph [20] that includes the traffic wij and ac-
tual length dij of each link, specyfying respectively the
number of available seats in flights between cities i and j
during the year 2002 and the euclidean distance dij spec-
ifying the route length between cities i and j [6, 19, 21].
The weights are symmetric (wij = wji) for the vast ma-
jority of edges so that we work with a symmetric undi-
rected graph. In addition to the very large degree fluc-
tuations, both the weights and the strength are broadly
distributed [6, 8] adding another level of complexity in
this network.

III. MEASURES OF CENTRALITY

A key issue in the characterization of networks is the
identification of the most central nodes in the system.
Centrality is however a concept that can be quantified
by various measures. The degree is a first intuitive and
local quantity that gives an idea of the importance of
a node. Its natural generalization to a weighted graph
is given by the strength of vertices defined for a node i

as [6, 22]

si =
∑

j∈V(i)

wij , (1)

where the sum runs over the set V(i) of neighbors of i.
In the case of the air transportation network it quantifies
the traffic of passengers handled by any given airport,
with both a broad distribution and strong correlations
with the degree, of the form s(k) ∼ kβs with βs ≈ 1.5 [6]
(a random attribution of weights would lead to s ∼ k and
thus βs = 1).

Since space is also an important parameter in this
network, other interesting quantities are the distance

strength Di and outreach Oi of i

Di =
∑

j∈V(i)

dij , Oi =
∑

j∈V(i)

wijdij , (2)

where dij is the Euclidean distance between i and j.
These quantities describe the cumulated distances of all
the connections from the considered airport and the total
distance traveled by passengers from this airport, respec-
tively. They display both broad distributions and grow
with the degree as D(k) ∼ kβD with βD ≈ 1.5 [21], and
O(k) ∼ kβO , with βO ≈ 1.8, showing the existence of
important correlations between distances, topology and
traffic.

Such local measures however do not take into account
non-local effects, such as the existence of crucial nodes
which may have small degree or strength but act as
bridges between different part of the network. In this
context, a widely used quantity to investigate node cen-
trality is the so-called betweenness centrality (BC) [23],
which counts the fraction of shortest paths between pairs
of nodes that passes through a given node. More pre-
cisely, if σhj is the total number of shortest paths from
h to j and σhj(i) is the number of these shortest paths
that pass through the vertex i, the betweenness of the
vertex i is defined as bi =

∑
h,j σhj(i)/σhj , where the

sum is over all the pairs with j 6= h. Key nodes are thus
part of more shortest paths within the network than less
important nodes.

In weighted networks, unequal link capacities make
some specific paths more favorable than others in con-
necting two nodes of the network. It thus seems nat-
ural to generalize the notion of betweenness centrality
through a weighted betweenness centrality in which short-
est paths are replaced with their weighted versions. A
straightforward way to generalize the hop distance (num-
ber of traversed edges) in a weighted graph consists in as-
signing to each edge (i, j) a length ℓij that is a function
of the characteristics of the link i − j. For example for
the WAN, ℓij should involve quantities such as the weight
wij or the Euclidean distance dij between airports i and
j. It is quite natural to assume that the effective distance
between two linked nodes is a decreasing function of the
weight of the link: the larger the flow (traffic) on a path,
the more frequent and the fastest will be the exchange
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of physical quantities (e.g. information, people, goods,
energy, etc.). In other words, we consider that the “sep-
aration” between nodes i and j decreases as wij increases.
While a first possibility would be to define the length of
an edge as the inverse of the weight, ℓi,j = 1/wij , we
propose to also take into account the geographical em-
bedding of the network, through the following definition:

ℓij =
dij

wij

. (3)

It is indeed reasonable to consider two nodes of the net-
works as further apart if their geographical distance is
larger, however a large traffic allows to decrease the “ef-
fective” distance by providing more frequent travel pos-
sibilities.

For any two nodes h and j, the weighted shortest path
between h and j is the one for which the total sum of
the lengths of the edges forming the path from h to j is
minimum, independently from the number of traversed
edges. We denote by σw

hj the total number of weighted

shortest paths from h to j and σw
hj(i) the number of them

that pass through the vertex i; the weighted betweenness
centrality (WBC) of the vertex i is then defined as

bw
i =

∑

h,j

σw
hj(i)

σw
hj

, (4)

where the sum is over all the pairs with j 6= h [29]. The
weighted betweenness represents a trade-off between
the finding of “bridges” that connect different parts of
a network, and taking into account the fact that some
links carry more traffic than others. We note that the
definition (4) is very general and can be used with any
definition of the effective length of an edge ℓij .

Centrality measures correlations

The probability distributions of the various definitions
of centrality are all characterized by heavy tailed dis-
tributions. In addition a significant level of correlation
is observed: vertices that have a large degree have also
typically large strength and betweenness. When a de-
tailed analysis of the different rankings is done,however
we observe that they do not coincide exactly. For ex-
ample, in the case of the WAN the most connected air-
ports do not necessarily have the largest betweenness cen-
trality [18, 19, 21]. Large fluctuations between central-
ity measures also appear when inspecting the list of the
airports ranked by using different definitions of central-
ity including weighted ones: strikingly, each definition
provides a different ranking. In addition, some airports
which are very central according to a given definition,
become peripheral according to another criteria. For
example, Anchorage has a large betweenness centrality

k D s O BC WBC

Degree k 1 0.7 0.58 0.584 0.63 0.39
Distance strength D 0.7 1 0.56 0.68 0.48 0.23
Strength s 0.58 0.56 1 0.83 0.404 0.24
Outreach O 0.584 0.68 0.83 1 0.404 0.21
Betweenness BC 0.63 0.48 0.404 0.404 1 0.566
Weighted BC 0.39 0.23 0.24 0.21 0.566 1

TABLE I: Similarity between the various rankings as mea-
sured by Kendall’s τ . For random rankings of N values, the
typical τ is of order 10−2.

but ranks only 138th and 147th in terms of degree and
strength, respectively. Similarly, Phoenix or Detroit have
large strength but low ranks (> 40) in terms of degree
and betweenness.

While previous analysis have focused on the quantita-
tive correlations between the various centrality measures
here we focus on ranking differences according to the var-
ious centrality measures. A quantitative analysis of the
correlations between two rankings of n objects can be
done using rank correlations such as Kendall’s τ [24]

τ =
nc − nd

n(n − 1)/2
(5)

where nc is the number of pairs whose order does not
change in the two different lists and nd is the number of
pairs whose order was inverted. This quantity is normal-
ized between −1 and 1: τ = 1 corresponds to identical
ranking while τ = 0 is the average for two uncorrelated
rankings and τ = −1 is a perfect anticorrelation.

Table I gives the values of τ for all the possible pairs
of centrality rankings. For N = 3, 880, two random
rankings yield a typical value of ±10−2 so that even the
smallest observed τ = 0.21 is the sign of a strong corre-
lation (All the values in this table were already attained
for a sublist of only the first n most central nodes, with
n ≈ 500). Remarkably enough, even a highly non-local
quantity such as the BC is strongly correlated with the
simplest local, non weighted measure given by the de-
gree. The weighted betweenness is the least correlated
with the other measures (except with the betweenness),
because ℓij involves ratios of weights and distances.

Another important issue concerns how the centrality
ranking relates to the geographical information available
for infrastructure networks such as the WAN. Figure 1
displays the geographical distribution of the world’s fif-
teen most central airports ranked according to different
centrality measures. This figure highlights the properties
and biases of the various measures: on one hand, topo-
logical measures miss the economical dimension of the
world-wide airport while weighted measures reflect traf-
fic and economical realities. Betweenness based measures
on the other hand pinpoint the most important nodes in
each geographical zone. In particular, the weighted be-
tweenness appears as a balanced measure which combines
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FIG. 1: Geographical distribution of the world’s 15 most cen-
tral airports ranked according to different centrality measures.
Topological measures miss the economical dimension of the
world-wide airport. In contrast, the traffic aspect shows a
clear dominance of North-America. Non-local measures pin-
point important nodes in each geographical zone.

traffic importance with topological centrality, leading to
a more uniform geographical distribution of the most im-
portant nodes.

IV. VULNERABILITY OF WEIGHTED

NETWORKS

A. Damage Characterization

The example of the WAN enables us to raise several
questions concerning the vulnerability of weighted net-
works. The analysis of complex networks robustness has
indeed been largely investigated in the case of unweighted
networks [14, 15, 16, 25]. In particular, the topological
integrity of the network Ng/N0 has been studied, where
Ng is the size of the largest component after a fraction
g of vertices has been removed and N0 is the size of the
original (connected) network. When Ng ≃ O(1), the en-
tire network has been destroyed [30].

Damage is generally studied for increasingly larger
fractions g of removed nodes in the network, where the
latter are chosen following different strategies. Heteroge-
neous networks with a scale-free degree distribution are
robust to situations in which the damage affects nodes
randomly. On the other hand, the targeted destruction
of nodes following their degree rank is extremely effec-
tive, leading to the total fragmentation of the network at
very low values of g [14, 15, 16]. Moreover, the removal
of the nodes with largest betweenness typically leads to
an even faster destruction of the network [25].

In the case of weighted networks, the quantification of
the damage should consider also the presence of weights.
In this perspective, the largest traffic or strength still car-
ried by a connected component of the network is likely an
important indicator of the network’s functionality. For
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FIG. 2: Effect of different attack strategies on the size of
the connected giant component (top) and on the outreach
(bottom).

this reason, we define new measures for the network’s
damage

Is(g) =
Sg

S0
, IO(g) =

Og

O0
, ID(g) =

Dg

D0
, (6)

where S0 =
∑

i si, O0 =
∑

i Oi and D0 =
∑

i Di

are the total strength, outreach and distance strength
in the undamaged network and Sg = maxG

∑
i∈G si,

Og = maxG

∑
i∈G Oi and Dg = maxG

∑
i∈G Di cor-

respond to the largest strength, outreach or distance
strength carried by any connected component G in the
network, after the removal of a density g of nodes. These
quantities measure the integrity of the network with
respect to either strength, outreach or distance strength,
since they refer to the relative traffic or flow that is
still handled in the largest operating component of the
network.

B. Variable-ranking attack strategies

In order to evaluate the vulnerability of the air-
transportation network WAN, we study the behavior of
damage measures in the presence of a progressive ran-
dom damage and of different attack strategies. Similarly
to the simple topological case, weighted networks are in-
herently resilient to random damages. Even at a large
density g of removed nodes, Ng/N0 and all integrity mea-
sures decrease mildly and do not seem to have a sharp
threshold above which the network is virtually destroyed.
This is in agreement with the theoretical prediction for
the absence of a percolation threshold in highly hetero-
geneous graphs [14, 15]. Very different is the scenario
corresponding to the removal of the most central nodes
in the network. In this case, however, we can follow var-
ious strategies based on the different definitions for the
centrality ranking of the most crucial nodes: nodes can
indeed be eliminated according to their rank in terms
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of degree, strength, outreach, distance strength, topolog-
ical betweenness, and weighted betweenness. In addi-
tion, we consider attack strategies based on a recursive
re-calculation of the centrality measures on the network
after each damage. This has been shown to be the most
effective strategy [25], as each node removal leads to a
change in the centrality properties of the other nodes.
Such procedure is somehow akin to a cascading failure
mechanism in which each failure triggers a redistribution
on the network and changes the next most vulnerable
node.

In Fig. 2 we report the behavior of Ng/N0 and of the
outreach integrity IO(g) for all cases. As expected, all
strategies lead to a rapid breakdown of the network with
a very small fraction of removed nodes. More precisely,
the robustness level of the network depends on the quan-
tity under scrutiny. First, the size of the giant component
decreases faster upon removal of nodes which are iden-
tified as central according to global (i.e. betweenness)
properties, instead of local ones (i.e. degree, strength),
showing that, in order to preserve the structural integrity
of a network, it is necessary to protect not only the hubs
but also strategic points such as bridges and bottle-neck
structures. Indeed, the betweenness, which is recom-
puted after each node removal is the most effective quan-
tity in order to pin-point such nodes [25]. The weighted
betweenness combines shortest paths and weights and
leads to an intermediate result: some of the important
topological bridges carry a small amount of traffic and
are therefore part of more shortest paths than weighted
shortest paths. These bridges have therefore a lower rank
according to the weighted betweenness. The weighted
betweenness is thus slightly less efficient for identifying
bridges. Finally, we note that all locally defined quanti-
ties yield a slower decrease of Ng and that the removal
of nodes with the largest distance strength is rather ef-
fective since it targets nodes which connect very distant
parts of the network.

Interestingly, when the attention shifts on the behavior
of the integrity measures, one finds a different picture in
which all the strategies achieve the same level of damage
(the curves of Is(g) and ID(g) present shapes very close
to the one of IO(g)). Most importantly, their decrease
is even faster and more pronounced than for topological
quantities: for Ng/N0 still of the order of 80%, the
integrity measures are typically smaller than 20%. This
emphasizes how the purely topological measure of the
size of the largest component does not convey all the
information needed. In other words, the functionality
of the network can be temporarily jeopardized in terms
of traffic even if the physical structure is still globally
well-connected. This implies that weighted networks
appear more fragile than thought by considering only
topological properties. All targeted strategies are very
effective in dramatically damaging the network, reaching
the complete destruction at a very small threshold value
of the fraction of removed nodes. In this picture, the
maximum damage is achieved still by strategies based

on non-local quantities such as the betweenness which
lead to a very fast decrease of both topological and
traffic related integrity measures. On the other hand,
the results for the integrity shows that the network may
unfortunately be substantially harmed also by using
strategies based on local quantities more accessible and
easy to calculate.

C. Single-ranking attack strategies.

The previous strategies based on a recursive re-
calculation of the centrality measures on the network are
however computationally expensive and depend upon a
global knowledge of the effect of each node removal. It
is therefore interesting to quantify the effectiveness of
such a strategy with respect to the more simple use of
the ranking information obtained for the network in its
integrity. In this case the nodes are removed according
to their initial ranking calculated for the undamaged
network. As shown in Fig. 3, successive removals of
nodes according to their initial outreach or BC lead
to a topological breakdown of the network which is
maximized in the case of recalculated quantities [25].
This effect is very clear in the case of global measures of
centrality such as the betweenness that may be altered
noticeably by local re-arranegements. When traffic
integrity measures are studied, however, differences are
negligible (Fig. 3, bottom curves): a very fast decrease
of the integrity is observed for all strategies, based
either on initial or recalculated quantities. The origin
of the similarity between both strategies can be traced
back by studying how much the centrality ranking of
the network vertices is scrambled during the damage
process. In order to quantify the reshuffling of the
ranking of the nodes according to various properties, we
study the previously used rank correlation as measured
by Kendall’s τ , computed between the rankings of the
nodes according to a given property before and after
each removal. In all cases, τ remains very close to 1,
showing that the reshuffling caused by any individual
removal remains extremely limited. Slightly smaller
values are observed when we compare the rankings of the
betweenness or of the weighted betweenness. This fact
can be understood since such quantities are non-local
and the betweennesses is more prone to vary when any
node in the network is removed. This evidence brings
both good and bad news concerning the protection of
large scale infrastructures. On one hand, the planning
of an effective targeted attack does need only to gather
information on the initial state of the network. On the
other hand, the identification of crucial nodes to protect
is an easier task that somehow is weakly dependent on
the attack sequence.
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FIG. 3: Removal of nodes according to the ranking calcu-
lated at the beginning of the process (empty symbols) or to
recalculated rankings (full symbols). The decrease of Ng and
IO(g) are comparable for both cases. Inset: Initial decrease
of IO(g) for very small values of g.

D. Geographical heterogeneoity.

As shown in Fig. 1, various geographical zones contain
different numbers of central airports. The immediate
consequence is that the different strategies for node
removal have different impacts in different geographical
areas. Figure 4 highlights this point by showing the
decrease of two integrity measures representative of
topological and traffic integrity, respectively. These
quantities were measured on subnetworks corresponding
to the six following regions: Africa, Asia, Europe, Latin
and North America, and Oceania. Figure 4 displays the
case of a removal of nodes according to their strength
(other removal strategies lead to similar data). While
the curves of topological damage are rather intertwined,
the decrease of the different integrity measures is much
faster for North America, Asia and Europe than Africa,
Oceania and Latin America; in particular the removal
of the first nodes do not affect at all these three last
zones. Such plots demonstrate two crucial points. First,
various removal strategies damage differently the various
geographical zones. Second, the amount of damage
according to a given removal strategy strongly depends
on the precise measure used to quantify the damage.
More generally, these results lead to the idea that
large weighted networks can be composed by different
subgraphs with very different traffic structure and thus
different responses to attacks.

V. CONCLUSIONS.

In summary, we have identified a set of different
but complementary centrality measures for weighted

networks. The various definitions of centrality are
correlated but lead to different rankings since different
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FIG. 4: Geographical effect of the removal of nodes with
largest strength. The integrity decreases strongly in regions
such as North-America, while a “delay” is observed for the
zones with smaller initial outreach or strength.

aspects (weighted or topological, and local or global) are
taken into account. The study of the vulnerability of
weighted networks to various targeted attack strategies
shows that complex networks are more fragile than
expected from the analysis of topological quantities
when the traffic characteristics are taken into account.
In particular, the network’s integrity in terms of carried
traffic is vanishing significantly before the network is
topologically fragmented. Moreover, we have compared
attacks based on initial centrality ranking with those
using quantities recalculated after each removal, since
any modification of the network (e.g. a node removal)
leads to a partial reshuffling of these rankings. Strik-
ingly, and in contrast to the case of purely topological
damage, the integrity of the network is harmed in a very
similar manner in both cases. All these results warn
about the extreme vulnerability of the traffic properties
of weighted networks and signals the need to pay a
particular attention to weights and traffic in the design
of protection strategies.
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[19] R. Guimerà, and L.A.N. Amaral, Eur. Phys. J. B 38,
381-385 (2004).

[20] J. Clark and D.A. Holton, A first look at graph theory,
World Scientific, Second reprint 1998.
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