211 research outputs found

    Multifractal current distribution in random diode networks

    Full text link
    Recently it has been shown analytically that electric currents in a random diode network are distributed in a multifractal manner [O. Stenull and H. K. Janssen, Europhys. Lett. 55, 691 (2001)]. In the present work we investigate the multifractal properties of a random diode network at the critical point by numerical simulations. We analyze the currents running on a directed percolation cluster and confirm the field-theoretic predictions for the scaling behavior of moments of the current distribution. It is pointed out that a random diode network is a particularly good candidate for a possible experimental realization of directed percolation.Comment: RevTeX, 4 pages, 5 eps figure

    Structural and functional characterization of (110)-oriented epitaxial La2/3Ca1/3MnO3 electrodes and SrTiO3 tunnel barriers

    Get PDF
    La2/3Ca1/3MnO3 (LCMO) films have been deposited on (110)-oriented SrTiO3 (STO) substrates. X-ray diffraction and high-resolution electron microscopy reveal that the (110) LCMO films are epitaxial and anisotropically in-plane strained, with higher relaxation along the [1¿10] direction than along the [001] direction; x-ray absorption spectroscopy data signaled the existence of a single intermediate Mn3+/4+ 3d-state at the film surface. Their magnetic properties are compared to those of (001) LCMO films grown simultaneously on (001) STO substrates It is found that (110) LCMO films present a higher Curie temperature (TC) and a weaker decay of magnetization when approaching TC than their (001) LCMO counterparts. These improved films have been subsequently covered by nanometric STO layers. Conducting atomic-force experiments have shown that STO layers, as thin as 0.8 nm, grown on top of the (110) LCMO electrode, display good insulating properties. We will show that the electric conductance across (110) STO layers, exponentially depending on the barrier thickness, is tunnel-like. The barrier height in STO (110) is found to be similar to that of STO (001). These results show that the (110) LCMO electrodes can be better electrodes than (001) LCMO for magnetic tunnel junctions, and that (110) STO are suitable insulating barriers

    Low Momentum Scattering in the Dirac Equation

    Get PDF
    It is shown that the amplitude for reflection of a Dirac particle with arbitrarily low momentum incident on a potential of finite range is -1 and hence the transmission coefficient T=0 in general. If however the potential supports a half-bound state at k=0 this result does not hold. In the case of an asymmetric potential the transmission coefficient T will be non-zero whilst for a symmetric potential T=1.Comment: 12 pages; revised to include additional references; to be published in J Phys

    Path Integral Approach to Strongly Nonlinear Composite

    Full text link
    We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case and has the following features: (i) It reproduces the weak contrast expansion to the second order and (ii) the effective medium exponent near the percolation threshold are s=1s=1, t=1+κt=1+\kappa, where κ\kappa is the nonlinearity exponent. Finally, we give analytical expressions for previously numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Nicotine Replacement Therapy during Pregnancy and Child Health Outcomes: A Systematic Review

    Get PDF
    Tobacco smoking in pregnancy is a worldwide public health problem. A majority of pregnant smokers need assistance to stop smoking. Most scientific societies recommend nicotine re- placement therapy (NRT) during pregnancy but this recommendation remains controversial because of the known fetal toxicity of nicotine. The objective of this systematic review was to provide an overview of human studies about child health outcomes associated with NRT use during pregnancy. The electronic databases MEDLINE, the Cochrane Database, Web of Science, and ClinicalTrials.gov were searched from the inception of each database until 26 December 2020. A total of 103 articles were identified through database searching using combination of keywords. Out of 75 screened articles and after removal of duplicates, ten full-text articles were assessed for eligibility and five were included in the qualitative synthesis. NRT prescription seems to be associated with higher risk of infantile colic at 6 months as in case of smoking during pregnancy, and with risk of attention- deficit/hyperactivity disorder. No association between NRT during pregnancy and other infant health disorders or major congenital anomalies has been reported. Well-designed controlled clinical trials with sufficient follows-up are needed to provide more information on the use of NRT or other pharmacotherapies for smoking cessation during pregnancy on post-natal child health outcomes.</div

    Effect of interface bonding on spin-dependent tunneling from the oxidized Co surface

    Get PDF
    We demonstrate that the factorization of the tunneling transmission into the product of two surface transmission functions and a vacuum decay factor allows one to generalize Julliere's formula and explain the meaning of the ``tunneling density of states'' in some limiting cases. Using this factorization we calculate spin-dependent tunneling from clean and oxidized fcc Co surfaces through vacuum into Al using the principal-layer Green's function approach. We demonstrate that a monolayer of oxygen on the Co (111) surface creates a spin-filter effect due to the Co-O bonding which produces an additional tunneling barrier in the minority-spin channel. This changes the minority-spin dominated conductance for the clean Co surface into a majority spin dominated conductance for the oxidized Co surface.Comment: 7 pages, revtex4, 4 embedded eps figure

    Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution

    Full text link
    We study the multifractal moments of the current distribution in randomly diluted resistor networks near the percolation treshold. When an external current is applied between to terminals xx and xx^\prime of the network, the llth multifractal moment scales as MI(l)(x,x)xxψl/νM_I^{(l)} (x, x^\prime) \sim | x - x^\prime |^{\psi_l /\nu}, where ν\nu is the correlation length exponent of the isotropic percolation universality class. By applying our concept of master operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of multifractal exponents {ψl}\{\psi_l \} for l0l \geq 0 to two-loop order. We find that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure

    A ferroelectric memristor

    Full text link
    Memristors are continuously tunable resistors that emulate synapses. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, but the mechanism remains controversial. Purely electronic memristors have recently emerged based on well-established physical phenomena with albeit modest resistance changes. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures

    Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria

    Get PDF
    Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking copy number and structural variations were observed within gene families and one, stevor, shows a host-specific sequence pattern. The complete genome sequence of the closest ancestor of P. falciparum enables us to estimate the timing of the beginning of speciation to be 40,000–60,000 years ago followed by a population bottleneck around 4,000–6,000 years ago. Our data allow us also to search in detail for the features of P. falciparum that made it the only member of the Laverania able to infect and spread in humans
    corecore