19,724 research outputs found
Building reflective practices in a pre-service math and science teacher education course that focuses on qualitative video analysis
The use of video for in-service and pre-service teacher development has been gaining acceptance, and yet video remains a challenging and understudied tool. Many projects have used video to help pre-service and in-service teachers reflect on their own teaching processes, examine teacher–student interactions, and develop their professional vision. But rarely has video been used in ways more akin to qualitative education research that is focused on student learning. Even more rarely has this focus occurred at the earliest stages of pre-service teaching when students have not yet decided to pursue teaching careers. Yet here we argue that there are benefits to our approach. We examine a course for prospective pre-service math and science teachers at the University of California, Berkeley, that engages participants in qualitative video analysis to foster their reflective practice. This course is unique in that the prospective pre-service teachers engage in qualitative video analysis at a level characteristic of professional educational research, in that their analysis focuses on student learning of math and science content. We describe classroom activities that provide opportunities for the preservice teacher participants to better observe, notice, and interpret their students’ sociocognitive activity. The course culmination project involves participants developing and teaching lessons in a high school classroom. The participants then videotape the lessons and conduct qualitative video analysis. Results include detailed examples of two selected prospective pre-service teachers demonstrating coherent and effective approaches to conceptualizing the learning and teaching of mathematical and science content along with some potential design principles for building reflective practices through qualitative video projects. © 2018 Association for Science Teacher Education
A Search for Optical Variability of Type 2 Quasars in SDSS Stripe 82
Hundreds of Type 2 quasars have been identified in Sloan Digital Sky Survey
(SDSS) data, and there is substantial evidence that they are generally galaxies
with highly obscured central engines, in accord with unified models for active
galactic nuclei (AGNs). A straightforward expectation of unified models is that
highly obscured Type 2 AGNs should show little or no optical variability on
timescales of days to years. As a test of this prediction, we have carried out
a search for variability in Type 2 quasars in SDSS Stripe 82 using
difference-imaging photometry. Starting with the Type 2 AGN catalogs of
Zakamska et al. (2003) and Reyes et al. (2008), we find evidence of significant
g-band variability in 17 out of 173 objects for which light curves could be
measured from the Stripe 82 data. To determine the nature of this variability,
we obtained new Keck spectropolarimetry observations for seven of these
variable AGNs. The Keck data show that these objects have low continuum
polarizations (p<~1% in most cases) and all seven have broad H-alpha and/or
MgII emission lines in their total (unpolarized) spectra, indicating that they
should actually be classified as Type 1 AGNs. We conclude that the primary
reason variability is found in the SDSS-selected Type 2 AGN samples is that
these samples contain a small fraction of Type 1 AGNs as contaminants, and it
is not necessary to invoke more exotic possible explanations such as a
population of "naked" or unobscured Type 2 quasars. Aside from misclassified
Type 1 objects, the Type 2 quasars do not generally show detectable optical
variability over the duration of the Stripe 82 survey.Comment: 14 pages, 8 figures. Accepted for publication in A
Glycine-induced neurotoxicity in organotypic hippocampal slice cultures
The role of the neutral amino acid glycine in excitotoxic neuronal injury is unclear. Glycine coactivates glutamate N-methyl-D-aspartate (NMDA) receptors by binding to a distinct recognition site on the NR1 subunit. Purely excitatory glycine receptors composed of NR1 and NR3/NR4 NMDA receptor subunits have recently been described, raising the possibility of excitotoxic effects mediated by glycine alone. We have previously shown that exposure to high concentrations of glycine causes extensive neurotoxicity in organotypic hippocampal slice cultures by activation of NMDA receptors. In the present study, we investigated further properties of in vitro glycine-mediated toxicity. Agonists of the glycine recognition site of NMDA receptors (D-serine and D-alanine) did not have any toxic effect in hippocampal cultures, whereas competitive blockade of the glycine site by 7-chlorokynurenic acid was neuroprotective. Stimulation (taurine, β-alanine) or inhibition (strychnine) of the inhibitory strychnine-sensitive glycine receptors did not produce any neurotoxicity. The toxic effects of high-dose glycine were comparable in extent to those produced by the excitatory amino acid glutamate in our model. When combined with sublethal hypoxia/hypoglycemia, the threshold of glycine toxicity was decreased to less than 1mM, which corresponds to the range of concentrations of excitatory amino acids measured during in vivo cerebral ischemia. Taken together, these results further support the assumption of an active role of glycine in excitotoxic neuronal injur
Formation of Concretions Occurring in the Ohio Shales Along the Olentangy River
Author Institution: 139 Westview Ave., Columbus, Ohio 4321
Cost analysis of advanced turbine blade manufacturing processes
A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items
Buchbesprechungen
Besprochen werden die beiden folgenden Werke:
(1) Handbuch der Bodenkunde - Grundwerk. Von H. P. Blume , P. Felix-Henningsen, W.R. Fischer, H.-G. Frede, R. Horn u. K. Stahr.
(2) Thienemann, Johannes: Rossitten - drei Jahrzehnte auf der Kurischen Nehrung. Reprint der Ausgabe Melsungen, Neumann-Neudamm von 1930 (3.Aufl.)
Supernova Environments in Hubble Space Telescope Images
The locations of supernovae in the local stellar and gaseous environment in galaxies contain important clues to their progenitor stars. Access to this information, however, has been hampered by the limited resolution achieved by ground-based observations. High spatial resolution Hubble Space Telescope (HST) images of galaxy fields in which supernovae had been observed can improve the situation considerably. We have examined the immediate environments of a few dozen supernovae using archival post-refurbishment HST images. Although our analysis is limited due to signal-to-noise ratio and filter bandpass considerations, the images allow us for the first time to resolve individual stars in, and to derive detailed color-magnitude diagrams for, several environments. We are able to place more rigorous constraints on the masses of these supernovae. A search was made for late-time emission from supernovae in the archival images, and for the progenitor stars in presupernova images of the host galaxies. In particular, we highlight the results for the Type II SN 1979C in M100. In addition, we have identified the progenitor of the Type IIn SN 1997bs in NGC 3627. We also add to the statistical inferences that can be made from studying the association of SNe with recent star-forming regions
The correlation potential in density functional theory at the GW-level: spherical atoms
As part of a project to obtain better optical response functions for nano
materials and other systems with strong excitonic effects we here calculate the
exchange-correlation (XC) potential of density-functional theory (DFT) at a
level of approximation which corresponds to the dynamically- screened-exchange
or GW approximation. In this process we have designed a new numerical method
based on cubic splines which appears to be superior to other techniques
previously applied to the "inverse engineering problem" of DFT, i.e., the
problem of finding an XC potential from a known particle density. The
potentials we obtain do not suffer from unphysical ripple and have, to within a
reasonable accuracy, the correct asymptotic tails outside localized systems.
The XC potential is an important ingredient in finding the particle-conserving
excitation energies in atoms and molecules and our potentials perform better in
this regard as compared to the LDA potential, potentials from GGA:s, and a DFT
potential based on MP2 theory.Comment: 13 pages, 9 figure
The casting and powder-metallurgy forming of precipitation-hardenable stainless steels
Casting and powder metallurgy techniques for shaping precipitation hardened stainless steel
- …