1,885 research outputs found

    Ultrathin, Ultra‐Conformable, and Free‐Standing Tattooable Organic Light‐Emitting Diodes

    Get PDF
    A novel tattooable, ultrathin, green organic light‐emitting diode (OLED) fabricated on top of commercial temporary tattoo paper, is demonstrated. The transfer mechanism relies on dissolution of the sacrificial layer typically incorporated in paper‐tattoos. The ready‐to‐use device can be stored on the tattoo substrate and released on the target surface at a later time, simply by a slight wetting of the tattoo paper with water. This approach provides a quick and easy method of transferring OLEDs on virtually any surface. This is particularly appealing, in perspective, for on‐skin and disposable electronic applications. The proof of concept demonstrates, for the very first time, the feasibility of ultrathin operational OLED tattoos. While the performance of such devices is not yet comparable with that of OLEDs on rigid or flexible non‐tattooable substrates, the results show the potential for an OLED tattoo technology in integrated conformable electronic circuits

    A sub-150-nanometre-thick and ultraconformable solution-processed all-organic transistor

    Get PDF
    Recent advancements in the field of electronics have paved the way to the development of new applications, such as tattoo electronics, where the employment of ultraconformable devices is required, typically achievable with a significant reduction in their total thickness. Organic materials can be considered enablers, owing to the possibility of depositing films with thicknesses at the nanometric scale, even from solution. However, available processes do not allow obtaining devices with thicknesses below hundreds of nanometres, thus setting a limit. Here, we show an all-organic field effect transistor that is less than 150 nm thick and that is fabricated through a fully solution-based approach. Such unprecedented thickness permits the device to conformally adhere onto nonplanar surfaces, such as human skin, and to be bent to a radius lower than 1 Όm, thereby overcoming another limitation for field-effect transistors and representing a fundamental advancement in the field of ultrathin and tattoo electronics

    Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium

    Get PDF
    The mirror relative motion of a suspended Fabry-Perot cavity is studied in the frequency range 3-10 Hz. The experimental measurements presented in this paper, have been performed at the Low Frequency Facility, a high finesse optical cavity 1 cm long suspended to a mechanical seismic isolation system identical to that one used in the VIRGO experiment. The measured relative displacement power spectrum is compatible with a system at thermal equilibrium within its environmental. In the frequency region above 3 Hz, where seismic noise contamination is negligible, the measurement distribution is stationary and Gaussian, as expected for a system at thermal equilibrium. Through a simple mechanical model it is shown that: applying the fluctuation dissipation theorem the measured power spectrum is reproduced below 90 Hz and noise induced by external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte

    Frequency-Dependent Squeezing for Advanced LIGO

    Get PDF
    The first detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational wave astronomy. The quest for gravitational wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light is being used to improve the shot noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∌50\sim 50 Hz. Below this frequency, quantum back action, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30Hz, using a 16m long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."Comment: 6 pages, 2 figures, to be published in Phys. Rev. Let

    Tear production, intraocular pressure, ultrasound biometric features and conjunctival flora identification in clinically normal eyes of two italian breeds of chicken (Gallus gallus domesticus)

    Get PDF
    Given the abundance of chickens in Italy, it is important for veterinarians to know the normal state of chickens’ eyes in order to identify any ophthalmic pathological changes. The aim of this study was to determine the normal values of select ocular parameters and to evaluate conjunctival microflora in two Italian chicken breeds. Sixty-six healthy chickens underwent a complete ophthalmic examination, which included a phenol red thread test (PRTT) for the evaluation of tear production and the assessment of intraocular pressure by rebound tonometry. B-mode ultrasound biometric measurements and conjunctival microflora identification were also performed in twenty-seven chickens. Mean PRTT was 23.77 ± 2.99 mm/15 s in the Livorno breed and 19.95 ± 2.81 mm/15 s in the Siciliana breed. Mean intraocular pressure was 14.3 ± 1.17 mmHg in the Livorno breed and 14.06 ± 1.15 mmHg in the Siciliana breed. Reference ranges for morphometric parameters were reported in the two breeds. Twenty-three chickens (85.18%) were bacteriologically positive. Chlamydia spp. antigen was detected in 14.81% of chickens. No positive cultures were obtained for fungi. Normal reference range values for selected ophthalmic parameters were obtained in clinically healthy chickens, which could facilitate accurate diagnosis and better management of ophthalmic diseases in these animals

    Lower limb deep vein thrombosis in COVID-19 patients admitted to intermediate care respiratory units

    Get PDF
    COVID-19 has been associated with an increased risk of thrombotic events; however, the reported incidence of deep vein thrombosis varies depending, at least in part, on the severity of the disease. Aim of this prospective, multicenter, observational study was to investigate the incidence of lower limb deep vein thrombosis as assessed by compression ultrasound in consecutive patients admitted to three pulmonary medicine wards designated to care for patients with COVID-19 related pneumonia, with or without respiratory failure but not requiring admission to an intensive care unit. Consecutive patients admitted between March 27 and May 6, 2020 were enrolled. Patients were excluded if they were less than 18-year-old or if compression ultrasound could not be performed for any reason. Patients were assessed at admission (t0) and after 7 days (t1). Major and non-major clinically relevant bleedings were recorded. Sixty-eight patients were enrolled. Two were excluded due to anatomical abnormalities that prevented compression ultrasound; sixty patients were retested at (t1). All patients were started on antithrombotic prophylaxis, unless therapeutic anticoagulation was required. Deep vein thrombosis as assessed by compression ultrasound was observed in 2 patients (3%); one of them was later deemed to represent a previous episode. No new episodes were detected at t1. One major and 2 non-major clinically relevant bleedings were observed. In the setting of patients with COVID-related pneumonia not requiring admission to an intensive care unit, the incidence of deep vein thrombosis is low and our data support not screening asymptomatic patients

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice
    • 

    corecore