2,373 research outputs found
Cryopumping Field Joint Can Testing
For long installations, vacuum jacketed piping often comes in 40 foot sections that are butt welded together in the field. A short can is then welded over the bare pipe connection to allow for insulation to be protected from the environment. Traditionally, the field joint is insulated with multilayer insulation and a vacuum is pulled on the can to minimize heat leak through the bare section and prevent frost from forming on the pipe section. The vacuum jacketed lines for the Ares I mobile launch platform were to be a combined 2000 feet long, with 60+ pipe sections and field joint cans. Historically, Kennedy Space Center has drilled a hole in the long sections to create a common vacuum with the field joint can to minimize maintenance on the vacuum jacketed piping. However, this effort looked at ways to use a passive system that didn't require a vacuum, but may cryopump to create its own vacuum. Various forms of aerogel, multilayer insulations, and combinations thereof were tested to determine the best method of insulating the field joint while minimizing maintenance and thermal losses
Ginkgo leaf cuticle chemistry across changing pCO2 regimes
Cuticles have been a key part of palaeobotanical research since the mid-19th Century. Recently, cuticular research has moved beyond morphological traits to incorporate the chemical signature of modern and fossil cuticles, with the aim of using this as a taxonomic and classification tool. For this approach to work, cuticle chemistry would have to maintain a strong taxonomic signal, with a limited input from the ambient environment in which the plant grew. Here, we use attenuated total reflectance Fourier Transform infrared (ATR-FTIR) spectroscopy to analyse leaf cuticles from Ginkgo biloba plants grown in experimentally enhanced CO2 conditions, to test for the impact of changing CO2 regimes on cuticle chemistry. We find limited evidence for an impact of CO2 on the chemical signature of Ginkgo cuticles, with more pronounced differences demonstrated between the abaxial (lower leaf surface) and adaxial (upper leaf surface) cuticles. These findings support the use of chemotaxonomy for plant cuticular remains across geological timescales, and the concomitant large-scale variations in CO2 concentrations
The impact of oxidation on spore and pollen chemistry
Sporomorphs (pollen and spores) have an outer wall composed of sporopollenin. Sporopollenin chemistry contains both a signature of ambient ultraviolet-B flux and taxonomic information, but it is currently unknown how sensitive this is to standard palynological processing techniques. Oxidation in particular is known to cause physical degradation to sporomorphs, and it is expected that this should have a concordant impact on sporopollenin chemistry. Here, we test this by experimentally oxidizing Lycopodium (clubmoss) spores using two common oxidation techniques: acetolysis and nitric acid. We also carry out acetolysis on eight angiosperm (flowering plant) taxa to test the generality of our results. Using Fourier Transform infrared (FTIR) spectroscopy, we find that acetolysis removes labile, non-fossilizable components of sporomorphs, but has a limited impact upon the chemistry of sporopollenin under normal processing durations. Nitric acid is more aggressive and does break down sporopollenin and reorganize its chemical structure, but when limited to short treatments (i.e. ≤10 min) at room temperature sporomorphs still contain most of the original chemical signal. These findings suggest that when used carefully oxidation does not adversely affect sporopollenin chemistry, and that palaeoclimatic and taxonomic signatures contained within the sporomorph wall are recoverable from standard palynological preparations
Recommended from our members
Proxy reconstruction of ultraviolet-B irradiance at the Earth’s surface, and its relationship with solar activity and ozone thickness
Solar ultraviolet-B (UV-B) irradiance that reaches the Earth’s surface acts as a biotic stressor and has the potential to modify ecological and environmental functioning. The challenges of reconstructing ultraviolent (UV) irradiance prior to the satellite era mean that there is uncertainty over long-term surface UV-B patterns, especially in relation to variations in solar activity over centennial and millennial timescales. Here, we reconstruct surface UV-B irradiance over the last 650 years using a novel UV-B proxy based on the chemical signature of pollen grains. We demonstrate a statistically significant positive relationship between the abundance of UV-B absorbing compounds in Pinus pollen and modelled solar UV-B irradiance. These results show that trends in surface UV-B follow the overall solar activity pattern over centennial timescales, and that variations in solar output are the dominant control on surface level UV-B flux, rather than solar modulated changes in ozone thickness. The Pinus biochemical response demonstrated here confirms the potential for solar activity driven surface UV-B variations to impact upon terrestrial biotas and environments over long timescales
Chemotaxonomy as a tool for interpreting the cryptic diversity of Poaceae pollen
The uniform morphology of different species of Poaceae (grass) pollen means that identification to below family level using light microscopy is extremely challenging. Poor taxonomic resolution reduces recoverable information from the grass pollen record, for example, species diversity and environmental preferences cannot be extracted. Recent research suggests Fourier Transform Infra-red Spectroscopy (FTIR) can be used to identify pollen grains based on their chemical composition. Here, we present a study of twelve species from eight subfamilies of Poaceae, selected from across the phylogeny but from a relatively constrained geographical area (tropical West Africa) to assess the feasibility of using this chemical method for identification within the Poaceae family. We assess several spectral processing methods and use K-nearest neighbour (k-nn) analyses, with a leave-one-out cross-validation, to generate identification success rates at different taxonomic levels. We demonstrate we can identify grass pollen grains to subfamily level with an 80% success rate. Our success in identifying Poaceae to subfamily level using FTIR provides an opportunity to generate high taxonomic resolution datasets in research areas such as palaeoecology, forensics, and melissopalynology quickly and at a relatively low cost
Variability in modern pollen rain from moist and wet tropical forest plots in Ghana, West Africa
How pollen moves within and between ecosystems affects factors such as the genetic structure of populations, how resilient they are to environmental change, and the amount and nature of pollen preserved in the sedimentary record. We set artificial pollen traps in two 100 m by 100 m vegetation plots, one in a wet evergreen forest, and one in a moist semi-deciduous forest in Ghana, West Africa. Five traps from each plot were counted annually from 2011 to 2014, to examine spatial and temporal variation in the pollen rain of the most abundant taxa shared between pollen and vegetation assemblages. Samples from the wet evergreen plot exhibited high variability within years, with the dominant pollen types changing between samples, and many pollen taxa being over-represented relative to their parent plant abundance in some traps whilst being entirely absent from others. The most abundant plant taxa of the wet evergreen plot (Drypetes and Cynometra) do, however, constitute major components of the pollen rain. There is less variation between samples from the moist semi-deciduous plot spatially, as it is dominated by Celtis, which typically comprises >70% of the pollen assemblages. We conclude that pollen rain in these tropical ecosystems is highly heterogeneous, and suggest that pollen assemblages obtained by trapping are susceptible to small-scale variations in forest structure. Conversely, this may mean that current recommendations of more than three years of trapping in tropical systems may be too high, and that space could substitute for time in modern tropical pollen trapping
Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture
The grass family (Poaceae) is one of the most economically important plant groups in the world today. In particular many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are grasses that were domesticated from wild progenitors during the Holocene. Archaeological evidence has provided key information on 15 domestication pathways of different grass lineages through time and space. However, the most abundant empirical archive of floral change-the pollen record-has been underused for reconstructing grass domestication patterns, because of the challenges of classifying grass pollen grains based on their morphology alone. Here, we test the potential of a novel approach for pollen classification based on the chemical signature of the pollen grains, measured using Fourier Transform infrared (FTIR) microspectroscopy. We use a dataset of eight domesticated and wild grass species, classified using k-nearest 20 neighbour classification coupled with leave one out cross validation. We demonstrate a 95% classification success rate on training data, and an 82% classification success rate on validation data. This result shows that FTIR spectroscopy can provide enhanced taxonomic resolution enabling species level assignment from pollen. This will enable the full testing of the timing and drivers of domestication and agriculture through the Holocene
The modern pollen-vegetation relationship of a tropical forest-savannah mosaic landscape, Ghana, West Africa
Transitions between forest and savannah vegetation types in fossil pollen records are often poorly understood due to over-production by taxa such as Poaceae and a lack of modern pollen-vegetation studies. Here, modern pollen assemblages from within a forest-savannah transition in West Africa are presented and compared, their characteristic taxa discussed, and implications for the fossil record considered. Fifteen artificial pollen traps were deployed for 1 year, to collect pollen rain from three vegetation plots within the forest-savannah transition in Ghana. High percentages of Poaceae and Melastomataceae/Combretaceae were recorded in all three plots. Erythrophleum suaveolens characterised the forest plot, Manilkara obovata the transition plot and Terminalia the savannah plot. The results indicate that Poaceae pollen influx rates provide the best representation of the forest-savannah gradient, and that a Poaceae abundance of >40% should be considered as indicative of savannah-type vegetation in the fossil record
Response to Comment on "Dying in the Sun: Direct evidence for elevated UV-B radiation at the end-Permian mass extinction"
Seddon and Zimmermann have raised questions about the evidence for increased UV-B flux across the end-Permian mass extinction (EPME) that was presented in our recent study, specifically regarding the measurement of UV-B-absorbing compound (UAC) levels in fossil pollen. We respond to these points, arguing that the comparison of FTIR spectra of >250 million-year-old Permian fossil pollen with ~700-year-old subfossil pollen is not valid and that negligible nonrandom interference derived from water vapor fluctuations during data generation cannot coincidentally produce a substantial UAC peak during the EPME. Furthermore, we refute the suggestion that the measured aromatic peak at 1600 cm-1 could have been influenced by diagenetic products from other organic constituents of pollen. The most productive route forward will be to generate sporomorph geochemical data from additional Permian-Triassic boundary sections to test the results put forward in our study
- …