2,890 research outputs found

    Immiscible phase incorporation during directional solidification of hypermonotectics

    Get PDF
    Solidification processes in immiscible samples were investigated by directly observing the events taking place at the solid-liquid interface during directional solidification. Visualization of these events was made possible through the use of a transparent metal analog system and a temperature gradient stage assembly fitted to an optical microscope. The immiscible transparent analog system utilized was the succinonitrile-glycerol system. This system has been shown to exhibit the same morphological transitions as observed in metallic alloys of monotectic composition. Both monotectic and hypermonotectic composition samples were directionally solidified in order to gain an improved understanding of the manner in which the excess hypermonotectic liquid is incorporated into the solidifying structure. The processing conditions utilized prevented sedimentation of the excess hypermonotectic liquid by directionally solidifying the samples in very thin (13 microns), horizontally oriented cells. High thermal gradient to growth rate ratios (G/R) were used in an effort to prevent constitutional supercooling and the subsequent formation of L(sub 2) droplets in advance of the solidification front during the growth of fibrous composite structures. Results demonstrated that hypermonotectic composites could be produced in samples up to two weight percent off of the monotectic composition by using a G/R ratio greater than or equal to 4.6 x 10(exp 4) C(s)/mm(sup 2) to avoid constitutional supercooling. For hypermonotectic samples processed with G/R ratios below 4.6 x 10(exp 4) C(s)/mm(sup 2), constitutional supercooling occurred and resulted in slight interfacial instability. For these samples, two methods of incorporation of the hypermonotectic liquid were observed and are reported. The correlation between the phase spacing, lambda, and the growth rate, R, was examined and was found to obey a relationship generally associated with a diffusion controlled coupled growth process. For samples with compositions ranging from the monotectic composition up to 2 percent off of the monotectic composition, data indicated that the square of the phase spacing (lambda) varied linearly with the inverse of the growth rate (R)

    Nebulized heparin is associated with fewer days of mechanical ventilation in critically ill patients: a randomized controlled trial

    Get PDF
    INTRODUCTION: Prolonged mechanical ventilation has the potential to aggravate or initiate pulmonary inflammation and cause lung damage through fibrin deposition. Heparin may reduce pulmonary inflammation and fibrin deposition. We therefore assessed whether nebulised heparin improved lung function in patients expected to require prolonged mechanical ventilation. METHODS: Fifty patients expected to require mechanical ventilation for more than 48 hours were enrolled in a double-blind randomised placebo-controlled trial of nebulised heparin (25,000 U) or placebo (normal saline) 4 or 6 hourly, depending on patient height. The study drug was continued while the patient remained ventilated to a maximum of 14 days from randomisation. RESULTS: Nebulised heparin was not associated with a significant improvement in the primary end-point, the average daily partial pressure of oxygen to inspired fraction of oxygen ratio while mechanically ventilated, but was associated with improvement in the secondary end-point ventilator free days amongst survivors at day 28 (22.6 4.0 versus 18.0 7.1, treatment difference 4.6 days, 95% CI 0.9 to 8.3, P = 0.02). Heparin administration was not associated with any increase in adverse events. CONCLUSIONS: Nebulised heparin was associated with fewer days of mechanical ventilation in critically ill patients expected to require prolonged mechanical ventilation. Further trials are required to confirm these findings. Trial registration: The Australian Clinical Trials Registry (ACTR-12608000121369

    Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    Get PDF
    We present a V-I color-magnitude diagram for a region 1'-2' from the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity. This distribution cannot be explained by a spread in age. The blue side of the giant branch rises to M_I ~ -4.0 and can be fitted with isochrones having [Fe/H] ~ -1.5. The red side consists of a heavily populated and dominant sequence that tops out at M_I ~ -3.2, and extends beyond V-I=4. This sequence can be fitted with isochrones with -0.2 < [Fe/H] < +0.1, for ages running from 15 Gyr to 5 Gyr respectively. We do not find the optically bright asymptotic giant branch stars seen in previous ground-based work and argue that the majority of them were artifacts of crowding. Our results are consistent with the presence of the infrared-luminous giants found in ground-based studies, though their existence cannot be directly confirmed by our data. There is little evidence for an extended or even a red horizontal branch, but we find a strong clump on the giant branch itself. If the age spread is not extreme, the distribution of metallicities in M32 is considerably narrower than that of the closed-box model of chemical evolution, and also appears somewhat narrower than that of the solar neighborhood. Overall, the M32 HST color-magnitude diagram is consistent with the average luminosity-weighted age of 8.5 Gyr and [Fe/H] = -0.25 inferred from integrated spectral indices.Comment: 22 pages, AASTeX, aaspp4 and flushrt style files included, 11 postscript figures, figures 1,2,5,7, and 8 available at ftp://bb3.jpl.nasa.gov/pub/m32 . Submitted to the Astronomical Journa

    Spring Drought Effects on Rangeland Forage Yield from Clayey Ecological Sites in Western South Dakota

    Get PDF
    Understanding the historical influence of seasonal precipitation, especially spring precipitation, and stocking rate on forage yield would be desirable for planning purposes. The objectives of this study were to examine the historical precipitation pattern and how it influenced forage yield on pastures that were stocked at light, moderate, and heavy stocking rates for 15 years at the Cottonwood Range and Livestock Research Station in western South Dakota. Weather data from 1909 to 2004 at the station were analyzed to determine the frequency of occurrence of below (≤75 of mean), normal, and above normal (\u3e125% of mean) spring precipitation (April, May, June). Additional data from the station provided for an examination of the relationships between weather and forage yield from pastures grazed at three stocking rates. Forage yield and precipitation data were collected from 1945 to 1960 from pastures continuously grazed from May to November at 0.25, 0.40, and 0.60 AUM/acre. Analysis of variance was used to test influence of spring precipitation (spring drought and non-spring drought) and stocking rate (light, moderate, and heavy) on forage yield. Below normal, normal, and above normal spring precipitation occurred 29, 48, and 23% of the time, respectively. Forage yield in spring drought years was 420 lb/ac less (P \u3c 0.01) than in non-spring drought years. Lightly stocked pastures had 38 and 71% more (P \u3c 0.01) forage than moderate and heavily stocked pastures. Spring droughts reduced forage yield (P \u3c 0.01) in light, moderate, and heavily stocked pastures by 20, 27, and 35%, respectively. Forage yield from lightly stocked pastures during spring droughts was similar to heavily stocked pastures in non-spring drought years. Our study indicates that spring precipitation should guide stocking rate decisions made during the growing season. Light and moderate stocking rates reduce the impact of spring drought on forage yield more than heavy stocking rates

    MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer

    Get PDF
    SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and submillimeter wavelength astronomy. Its very small size, wide spectral bandwidth, and highly multiplexed readout will enable construction of powerful multibeam spectrometers for high-redshift observations. The spectrometer consists of a horn-coupled microstrip feedline, a bank of narrow-band superconducting resonator filters that provide spectral selectivity, and Kinetic Inductance Detectors (KIDs) that detect the power admitted by each filter resonator. The design is realized using thin-film lithographic structures on a silicon wafer. The mm-wave microstrip feedline and spectral filters of the first prototype are designed to operate in the band from 195-310 GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed to operate at hundreds of MHz and are fabricated from titanium nitride with a Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip, passes through the frequency-selective filter, and is finally absorbed by the corresponding KID where it causes a measurable shift in the resonant frequency. In this proceedings, we present the design of the KIDs employed in SuperSpec and the results of initial laboratory testing of a prototype device. We will also briefly describe the ongoing development of a demonstration instrument that will consist of two 500-channel, R=700 spectrometers, one operating in the 1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update
    • …
    corecore