4,996 research outputs found

    U.S. East Coast Trough Indices at 500 hPa and New England Winter Climate Variability

    Get PDF
    Using monthly gridded 500-hPa data, two synoptic indices are defined to better understand the principle mechanisms controlling intraseasonal to multiannual winter climate variability in NewEngland (NE). The “trough axis index” (TAI) is created to quantify the mean longitudinal position of the common East Coast pressure trough, and the “trough intensity index” (TII) is calculated to estimate the relative amplitude of this trough at 42.5°N. The TAI and TII are then compared with records for NE regional winter precipitation, temperature, and snowfall with the goal of understanding physical mechanisms linking NE winter climate with regional sea surface temperatures (SST), the North Atlantic Oscillation (NAO), and the Pacific–North American (PNA) teleconnection pattern. The TAI correlates most significantly with winter precipitation at inland sites, such that a western (eastern)trough axis position is associated with greater (lower) average monthly precipitation. Also, significant correlations between the TAI and both NE regional SSTs and the NAO suggest that longitudinal shifting of the trough is one possible mechanism linking the North Atlantic with NE regional winterclimate variability. The NE winter temperature is significantly correlated with the TII, regional SSTs, and the NAO. While the PNA also correlates with the TII, NE winter climate variables are apparently unrelated to the PNA index

    A Descriptive Survey of Grant Funded Physical Education Teachers' Knowledge, Skills and Dispositions in Adapted Physical Education.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    To California by Sea: A Maritime History of the California Gold Rush

    Get PDF

    ROV's Video Recordings as a Tool to Estimate Variation in Megabenthic Epifauna Diversity and Community Composition in the Guaymas Basin

    Get PDF
    Patterns in benthic megafauna diversity in littoral and intertidal zones in the Gulf of California have been associated with both habitat heterogeneity and substrate type. Current knowledge of invertebrate communities in hard bottom habitats at depths > 200 m in the Gulf is poor due to the methodological limitations inherent in sampling deep habitats. Using video imagery of benthic habitats coupled with environmental data from the Remotely Operated Vehicle Doc Ricketts, we documented variation in the diversity and community composition of the benthos from 849 to 990 m depth in the NW limit of the Guaymas Basin, in relation to dissolved oxygen and substrate characteristics. This depth range overlaps an oxygen minimum zone where oxygen drops to levels < 0.5 ml L-1 and strong gradients in a narrow depth range occur. Dissolved oxygen varied along our benthic survey from 0.200 to 0.135 ml L-1. We observed high taxonomic richness across an area of rocky outcrops through the lower transition zone. This megafaunal pattern differs from reports from other oxygen minimum zones characterized by a great abundance of a few species. Taxonomic richness diminished at depths with reduced dissolved oxygen in the lower boundary of the oxygen minimum zone with increasing soft sediment cover. We found that rocky outcrops and structure-forming organisms such as corals, sponges, and oyster aggregations supported a higher diversity (H' = 0.8) than soft sediment (H' = 0.7) as have been observed in other habitats such as seamounts. Environmental variables that explained most of the megafaunal variation were substrate type (18.4%), depth (1.14%) and temperature (0.9%). Salinity (0.45%) and dissolved oxygen (0.3%) were less important factors to explain the megafaunal composition variance. Substrate type played a key role in the diversity and composition of benthic megafauna. These results broaden our understanding concerning the potential roles of substrate characteristics in the community composition of the deep-sea benthic megafaunal assemblages in the Gulf of California and oxygen minimum zones in general

    Temperature-dependent Hall scattering factor and drift mobility in remotely doped Si:B/SiGe/Si heterostructures

    Get PDF
    Hall-and-Strip measurements on modulation-doped SiGe heterostructures and combined Hall and capacitance–voltage measurements on metal-oxide-semiconductor (MOS)-gated enhancement mode structures have been used to deduce Hall scattering factors, rH, in the Si1 – xGex two-dimensional hole gas. At 300 K, rH was found to be equal to 0.4 for x = 0.2 and x = 0.3. Knowing rH, it is possible to calculate the 300 K drift mobilities in the modulation-doped structures which are found to be 400 cm2 V – 1 s – 1 at a carrier density of 3.3 × 1011 cm – 2 for x = 0.2 and 300 cm2 V – 1 s – 1 at 6.3 × 1011 cm – 2 for x = 0.3, factors of between 1.5 and 2.0 greater than a Si pMOS control

    La vĂ©gĂ©tation des places vaso-sablonneuses de la presqu'Ăźle de Cam-Ranh. Note n° IV: Introduction Ă  l'Ă©tude des sables littoraux du Centre ViĂȘt-Nam.

    Get PDF
    The important sedimentation of the Bay of Cam-Ranh rivers Suȏi Hai, Truong Suȏi, Suȏi Ca, Suȏi Tra Duc, Sȏng Can, Sȏng Trau from the Annamite Chain, provides hydrophilic vegetation (mangroves and swampy meadows) with a favorable habitat

    Physical loading in professional soccer players:Implications for contemporary guidelines to encompass carbohydrate periodization

    Get PDF
    Despite more than four decades of research examining the physical demands of match-play, quantification of the customary training loads of adult male professional soccer players is comparatively recent. The training loads experienced by players during weekly micro-cycles are influenced by phase of season, player position, frequency of games, player starting status, player-specific training goals and club coaching philosophy. From a macronutrient perspective, the periodization of physical loading within (i.e., match versus training days) and between contrasting micro-cycles (e.g., 1, 2 or 3 games per week schedules) has implications for daily carbohydrate (CHO) requirements. Indeed, aside from the well-recognised role of muscle glycogen as the predominant energy source during match-play, it is now recognised that the glycogen granule may exert regulatory roles in activating or attenuating the molecular machinery that modulate skeletal muscle adaptations to training. With this in mind, the concept of CHO periodization is gaining in popularity, whereby CHO intake is adjusted day-by-day and meal-by-meal according to the fuelling demands and specific goals of the upcoming session. On this basis, the present paper provides a contemporary overview and theoretical framework for which to periodize CHO availability for the professional soccer player according to the “fuel for the work” paradigm.</p
    • 

    corecore