12,928 research outputs found

    Advanced optimal extraction for the Spitzer/IRS

    Get PDF
    We present new advances in the spectral extraction of point-like sources adapted to the Infrared Spectrograph onboard the Spitzer Space Telescope. For the first time, we created a super-sampled point spread function of the low-resolution modules. We describe how to use the point spread function to perform optimal extraction of a single source and of multiple sources within the slit. We also examine the case of the optimal extraction of one or several sources with a complex background. The new algorithms are gathered in a plugin called Adopt which is part of the SMART data analysis software.Comment: Accepted for publication in PAS

    The cost of systemic corticosteroid-induced morbidity in severe asthma : a health economic analysis

    Get PDF
    The study data-set was supported by the Respiratory Effectiveness Group through their academic partnership with Optimum Patient Care. Ciaran O'Neill was funded under a HRB Research Leader Award (RL/13/16).Peer reviewedPublisher PD

    Super- and subradiant emission of two-level systems in the near-Dicke limit

    Full text link
    We analyze the stability of super- and subradiant states in a system of identical two-level atoms in the near-Dicke limit, i.e., when the atoms are very close to each other compared to the wavelength of resonant light. The dynamics of the system are studied using a renormalized master equation, both with multipolar and minimal-coupling interaction schemes. We show that both models lead to the same result and, in contrast to unrenormalized models, predict that the relative orientation of the (co-aligned) dipoles is unimportant in the Dicke limit. Our master equation is of relevance to any system of dipole-coupled two-level atoms, and gives bounds on the strength of the dipole-dipole interaction for closely spaced atoms. Exact calculations for small atom systems in the near-Dicke limit show the increased emission times resulting from the evolution generated by the strong dipole-dipole interaction. However, for large numbers of atoms in the near-Dicke limit, it is shown that as the number of atoms increases, the effect of the dipole-dipole interaction on collective emission is reduced.Comment: 14 pages, 6 figures, published versio

    Deterministic Entanglement of Assistance and Monogamy Constraints

    Full text link
    Certain quantum information tasks require entanglement of assistance, namely a reduction of a tripartite entangled state to a bipartite entangled state via local measurements. We establish that 'concurrence of assistance' (CoA) identifies capabilities and limitations to producing pure bipartite entangled states from pure tripartite entangled states and prove that CoA is an entanglement monotone for (2×2×n)(2\times2\times n)-dimensional pure states. Moreover, if the CoA for the pure tripartite state is at least as large as the concurrence of the desired pure bipartite state, then the former may be transformed to the latter via local operations and classical communication, and we calculate the maximum probability for this transformation when this condition is not met.Comment: 5 pages, no figure

    Complete characterization of ultrashort pulse sources at 1550 nm

    Get PDF
    This paper reviews the use of frequency-resolved optical gating (FROG) to characterize mode-locked lasers producing ultrashort pulses suitable for high-capacity optical communications systems at wavelengths around 1550 nm, Second harmonic generation (SHG) FROG is used to characterize pulses from a passively mode-locked erbium-doped fiber laser, and both single-mode and dual-mode gain-switched semiconductor lasers. The compression of gain-switched pulses in dispersion compensating fiber is also studied using SHG-FROG, allowing optimal compression conditions to be determined without a priori assumptions about pulse characteristics. We also describe a fiber-based FROG geometry exploiting cross-phase modulation and show that it is ideally suited to pulse characterization at optical communications wavelengths. This technique has been used to characterize picosecond pulses with energy as low as 24 pJ, giving results in excellent agreement with SHG-FROG characterization, and without any temporal ambiguity in the retrieved puls

    Monogamy and polygamy for multi-qubit entanglement using R\'enyi entropy

    Full text link
    Using R\'enyi-α\alpha entropy to quantify bipartite entanglement, we prove monogamy of entanglement in multi-qubit systems for α2\alpha \geq 2. We also conjecture a polygamy inequality of multi-qubit entanglement with strong numerical evidence for 0.83ϵα1.43+ϵ0.83-\epsilon \leq \alpha \leq 1.43+\epsilon with 0<ϵ<0.010<\epsilon<0.01.Comment: 19 pages, 2 figure

    Genetically determined round ascospores

    Get PDF
    Genetically determined round ascospore

    Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil

    Get PDF
    Based on the knowledge that alpaca (Lama pacos) have a lower fractional outflow rate of feed particles (particulate FOR) from their forestomach than sheep (San Martin 1987), the current study measured methane (CH4) production and other digestion parameters in these species in three successive experiments (1, 2 and 3): Experiment 1, lucerne hay fed indoors; Experiment 2, grazed on perennial ryegrass/white clover pasture (PRG/WC); and Experiment 3, grazed on birdsfoot trefoil (Lotus corniculatits) pasture (Lotus). Six male alpaca and six castrated Romney sheep were simultaneously and successively fed on the forages either ad libitium or at generous herbage allowances (grazing). CH4 production (g/day) (using the sulphur hexafluoride tracer technique), voluntary feed intake (VFI), diet quality, and protozoa counts and volatile fatty acid concentrations in samples of forestomach contents were determined. In addition, feed digestibility, energy and nitrogen (N) balances and microbial N supply from the forestomach (using purine derivatives excretion) were measured in Experiment 1. Diets selected by alpaca were of lower quality than those selected by sheep, and the voluntary gross energy intakes (GEI, MJ) per kg of liveweight(0.75) were consistently lower (P0.05) in their CH4 yields (% GEI) when fed on lucerne hay (5.1 v. 4.7), but alpaca had a higher CH4 yield when fed on PRG/WC (9.4 v. 7.5, P0.05) in diet N partition or microbial N yield, but alpaca had higher (P<0.05) neutral detergent fibre digestibility (0.478 v. 0.461) and lower (P<0.01) urinary energy losses (5.2 v. 5.8 % GEI) than sheep. It is suggested that differences between these species in forestomach particulate FOR might have been the underlying physiological mechanism responsible for the differences in CH4 yield, although the between-species differences in VFI and diet quality also had a major effect on it

    Designing antibiotic cycling strategies by determining and understanding local adaptive landscapes

    Get PDF
    The evolution of antibiotic resistance among bacteria threatens our continued ability to treat infectious diseases. The need for sustainable strategies to cure bacterial infections has never been greater. So far, all attempts to restore susceptibility after resistance has arisen have been unsuccessful, including restrictions on prescribing [1] and antibiotic cycling [2,3]. Part of the problem may be that those efforts have implemented different classes of unrelated antibiotics, and relied on removal of resistance by random loss of resistance genes from bacterial populations (drift). Here, we show that alternating structurally similar antibiotics can restore susceptibility to antibiotics after resistance has evolved. We found that the resistance phenotypes conferred by variant alleles of the resistance gene encoding the TEM {\beta}-lactamase (blaTEM) varied greatly among 15 different {\beta}-lactam antibiotics. We captured those differences by characterizing complete adaptive landscapes for the resistance alleles blaTEM-50 and blaTEM-85, each of which differs from its ancestor blaTEM-1 by four mutations. We identified pathways through those landscapes where selection for increased resistance moved in a repeating cycle among a limited set of alleles as antibiotics were alternated. Our results showed that susceptibility to antibiotics can be sustainably renewed by cycling structurally similar antibiotics. We anticipate that these results may provide a conceptual framework for managing antibiotic resistance. This approach may also guide sustainable cycling of the drugs used to treat malaria and HIV
    corecore