9,378 research outputs found

    Time-Reversal Symmetry Breaking and Decoherence in Chaotic Dirac Billiards

    Full text link
    In this work, we perform a statistical study on Dirac Billiards in the extreme quantum limit (a single open channel on the leads). Our numerical analysis uses a large ensemble of random matrices and demonstrates the preponderant role of dephasing mechanisms in such chaotic billiards. Physical implementations of these billiards range from quantum dots of graphene to topological insulators structures. We show, in particular, that the role of finite crossover fields between the universal symmetries quickly leaves the conductance to the asymptotic limit of unitary ensembles. Furthermore, we show that the dephasing mechanisms strikingly lead Dirac billiards from the extreme quantum regime to the semiclassical Gaussian regime

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed

    SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    Full text link
    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of 2.86±0.35 MJup2.86\pm0.35~{\rm M_{Jup}} and a radius of 1.130.18+0.26 RJup1.13^{+0.26}_{-0.18}~{\rm R_{Jup}}, and it orbits a G0, metallic ([Fe/H]=0.35±0.150.35\pm0.15) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of Teq=1000±45T_{eq}=1000 \pm 45 K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of 2.82±0.52 MJup2.82\pm 0.52~{\rm M_{Jup}} and a radius of 1.45±0.16 RJup1.45\pm0.16~{\rm R_{Jup}}, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of 0.84±0.15 MJup0.84\pm0.15~{\rm M_{Jup}} and requires less extra-dissipation to explain its uncommonly large radius of 1.99±0.18 RJup1.99\pm0.18~{\rm R_{Jup}}. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of 1.46±0.17 M1.46\pm0.17~M_{\odot} and 1.54±0.09 M1.54 \pm 0.09~M_{\odot}, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system

    SOPHIE velocimetry of Kepler transit candidates IX. KOI-415 b: a long-period, eccentric transiting brown dwarf to an evolved Sun

    Full text link
    We report the discovery of a long-period brown-dwarf transiting companion of the solar-type star KOI-415. The transits were detected by the Kepler space telescope. We conducted Doppler measurements using the SOPHIE spectrograph at the Observatoire de Haute-Provence. The photometric and spectroscopic signals allow us to characterize a 62.14+-2.69 Mjup, brown-dwarf companion of an evolved 0.94+-0.06 Msun star in a highly eccentric orbit of P = 166.78805+-0.00022 days and e = 0.698+-0.002. The radius of KOI-415 b is 0.79 (-0.07,+0.12) Rjup, a value that is compatible with theoretical predictions for a 10 Gyr, low-metallicity and non-irradiated object.Comment: accepted in A&A Letter

    Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b

    Full text link
    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive.Comment: 13 pages, 4 figures, 6 tables, final version accepted for publication in A&

    SOPHIE velocimetry of Kepler transit candidates XI. Kepler-412 system: probing the properties of a new inflated hot Jupiter

    Full text link
    We confirm the planetary nature of Kepler-412b, listed as planet candidate KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program of Kepler-released planet candidates, which is on going with the SOPHIE spectrograph. We performed a complete analysis of the system by combining the Kepler observations from Q1 to Q15, to ground-based spectroscopic observations that allowed us to derive radial velocity measurements, together with the host star parameters and properties. We also analyzed the light curve to derive the star's rotation period and the phase function of the planet, including the secondary eclipse. We found the planet has a mass of 0.939 ±\pm 0.085 MJup_{Jup} and a radius of 1.325 ±\pm 0.043 RJup_{Jup} which makes it a member of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar activity as observed in the Kepler light curve and the rotation of the star of 17.2 ±\pm 1.6 days. From the detected secondary, we derived the day side temperature as a function of the geometric albedo and estimated the geometrical albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux corresponds to a night side brightness temperature of 2154 ±\pm 83 K, much greater than what is expected for a planet with homogeneous heat redistribution. From the comparison to star and planet evolution models, we found that dissipation should operate in the deep interior of the planet. This modeling also shows that despite its inflated radius, the planet presents a noticeable amount of heavy elements, which accounts for a mass fraction of 0.11 ±\pm 0.04.Comment: 11 pages, 9 figure

    SOPHIE velocimetry of Kepler transit candidates XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system

    Full text link
    As part of our follow-up campaign of Kepler planets, we observed Kepler-117 with the SOPHIE spectrograph at the Observatoire de Haute-Provence. This F8-type star hosts two transiting planets in non-resonant orbits. The planets, Kepler-117 b and c, have orbital periods 18.8\simeq 18.8 and 50.8\simeq 50.8 days, and show transit-timing variations (TTVs) of several minutes. We performed a combined Markov chain Monte Carlo (MCMC) fit on transits, radial velocities, and stellar parameters to constrain the characteristics of the system. We included the fit of the TTVs in the MCMC by modeling them with dynamical simulations. In this way, consistent posterior distributions were drawn for the system parameters. According to our analysis, planets b and c have notably different masses (0.094±0.0330.094 \pm 0.033 and 1.84±0.181.84 \pm 0.18 MJ_{\rm J}) and low orbital eccentricities (0.0493±0.00620.0493 \pm 0.0062 and 0.0323±0.00330.0323 \pm 0.0033). The uncertainties on the derived parameters are strongly reduced if the fit of the TTVs is included in the combined MCMC. The TTVs allow measuring the mass of planet b, although its radial velocity amplitude is poorly constrained. Finally, we checked that the best solution is dynamically stable.Comment: 16 pages, of whom 5 of online material.12 figures, of whom 2 in the online material. 7 tables, of whom 4 in the online material. Published in A&

    Manejo e controle das principais pragas da cultura do arroz irrigado na região do baixo São Francisco.

    Get PDF
    bitstream/item/64533/1/CPATC-DOCUMENTOS-70-MANEJO-E-CONTROLE-DAS-PRINCIPAIS-PRAGAS-DA-CULTURA-DO-ARROZ-IRRIGADO-NA-REGIA.pd

    Characterization of Plum Procyanidins by Thiolytic Depolymerization

    Get PDF
    The phenolic compounds of ?Green Gage? (GG) plums (Prunus domestica L.), ?Rainha Cla?udia Verde?, from a ?protected designation of origin? (PDO), in Portugal, were quantified in both flesh and skin tissues of plums collected in two different orchards (GG-V and GG-C). Analyzes of phenolic compounds were also performed on another GG European plum obtained in France (GG-F) and two other French plums, ?Mirabelle? (M) and ?Golden Japan? (GJ). Thiolysis was used for the first time in the analysis of plum phenolic compounds. This methodology showed that the flesh and skin contain a large proportion of flavan-3-ols, which account, respectively, for 92 and 85% in GJ, 61 and 44% in GG-V, 62 and 48% in GG-C, 54 and 27% in M, and 45 and 37% in GG-F. Terminal units of procyanidins observed in plums are mainly (+)-catechin (54?77% of all terminal units in flesh and 57?81% in skin). The GJ plums showed a phenolic composition different from all of the others, with a lower content of chlorogenic acid isomers and the presence of A-type procyanidins as dimers and terminal residues of polymerized forms. The average degree of polymerization (DPn) of plum procyanidins was higher in the flesh (5?9 units) than in the skin (4?6 units). Procyanidin B7 was observed in the flesh of all GG plums and in the skin of the Portuguese ones. Principal component analysis of the phenolic composition of the flesh and skin of these plums obtained after thiolysis allowed their distinction according to the variety and origin, opening the possibility of the use of phenolic composition for variety/origin identification
    corecore