11 research outputs found

    Photo- and Thermocatalytic CO2 Methanation: A Comparison of Ni/Al2O3 and Ni–Ce Hydrotalcite-Derived Materials under UV and Visible Light

    Get PDF
    Catalysts derived from Ni/Al/Mg/Ce hydrotalcite were prepared via a co-precipitation method, varying the Ce/Al atomic ratio. All of the catalytic systems thus prepared were tested for CO2 methanation under dark and photocatalytic conditions (visible and ultraviolet) under continuous flow with the light intensity set to 2.4 W cm−2. The substitution of Al by Ce formed a solid solution, generating oxygen vacancies and Ce3+/Ce4+ ions that helped shift the dissociation of CO2 towards the production of CH4, thus enhancing the activity of methanation, especially at lower temperatures ( Hydrotalcite without Ce promoter > 25Ni/Al2O3 > 13Ni/Al2O3. Hydrotalcite, with a Ce/Al atomic ratio of 0.22 and a Ni content of 23 wt%, produced 7.74 mmol CH4 min−1·gcat at 473 K under visible light. Moreover, this catalyst exhibited stable photocatalytic activity during a 24 h reaction time with a CO2 conversion rate of 65% and CH4 selectivity of >98% at 523 K. This photocatalytic Sabatier enhancement achieved activity at lower temperatures than those reported in previous publications.This research was supported by the UPV/EHU and Basque Government (IT1554-22, GIC 21/68, grant number PID2020-112889RB-I00, funded by MCIN/AEI/10.13039/501100011033)

    UV- and visible-light photocatalysis using Ni–Co bimetallic and monometallic hydrotalcite-like materials for enhanced CO2 methanation in sabatier reaction

    Get PDF
    The CO2 catalytic reduction activities of four different Co-modified Ni-based catalysts derived from hydrotalcite-like materials (HTCs) prepared by co-precipitation method were investigated under thermal and photocatalytic conditions. All catalysts were tested from 473 to 723 K at 10 bar (abs). The light intensity for photocatalytic reactions was 2.4 W cm-2. The samples were characterized to determine the effect of morphological and physicochemical properties of mono-bimetallic active phases on their methanation activity. The activity toward CO2 methanation followed the next order: Ni > Co–Ni > Co. For the monometallic Ni catalyst an increase of a 72% was achieved in the photo-catalytic activity under UV and vis light irradiation at temperatures lower by > 100 K than those in a conventional reaction. Co-modified Ni based hydrotalcite catalysts performed with stability and no deactivation for the 16 h studied under visible light for methanation at 523 K due to the presence of basic sites.This research was supported by: Basque Government Project: IT1554-22 and University of the Basque Country. Grant PID2020-112889RB-I00 funded by: MCIN/AEI/10.13039/501100011033. Authors are grateful for the support provided: SGIker/UPV/EHU & European funding (ERDF and ESF)

    Evolution of project-based learning in small groups in environmental engineering courses

    Get PDF
    This work presents the assessment of the development and evolution of an active methodology (Project-Based Learning –PBL-) implemented on the course “Unit Operations in Environmental Engineering”, within the bachelor’s degree in Environmental Engineering, with the purpose of decreasing the dropout rate in this course. After the initial design and implementation of this methodology during the first academic year (12/13), different modifications were adopted in the following ones (13-14, 14-15 & 15-16) in order to optimize the student’s and professor’s work load as well as correct some malfunctions observed in the initial design of the PBL. This active methodology seeks to make students the main architects of their own learning processes. Accordingly, they have to identify their learning needs, which is a highly motivating approach both for their curricular development and for attaining the required learning outcomes in this field of knowledge. The results obtained show that working in small teams (cooperative work) enhances each group member’s self–learning capabilities. Moreover, academic marks improve when compared to traditional learning methodologies. Nevertheless, the implementation of more active methodologies, such as project-based learning, in small groups has certain specific characteristics. In this case it has been implemented simultaneously in two different groups of 10 students each one. Such small groups are more heterogeneous since the presence of two highly motivated students or not can vary or affect the whole group’s attitude and academic resultsPeer Reviewe

    Effect of the Addition of Alkaline Earth and Lanthanide Metals for the Modification of the Alumina Support in Ni and Ru Catalysts in CO2 Methanation

    Get PDF
    In order to reduce greenhouse gas emissions, which are reaching alarming levels in the atmosphere, capture, recovery, and transformation of carbon dioxide emitted to methane is considered a potentially profitable process. This transformation, known as methanation, is a catalytic reaction that mainly uses catalysts based on noble metals such as Ru and, although with less efficiency, on transition metals such as Ni. In order to improve the efficiency of these conventional catalysts, the effect of adding alkaline earth metals (Ba, Ca, or Mg at 10 wt%) and lanthanides (La or Ce at 14 wt%) to nickel (13 wt%), ruthenium (1 wt%), or both-based catalysts has been studied at temperatures between 498 and 773 K and 10 bar pressure. The deactivation resistance in presence of H2S was also monitored. The incorporation of La into the catalyst produces interactions between active metal Ni, Ru, or Ru-Ni and the alumina support, as determined by the characterization. This fact results in an improvement in the catalytic activity of the 13Ni/Al2O3 catalyst, which achieves a methane yield of 82% at 680 K for 13Ni/14La-Al2O3, in addition to an increase in H2S deactivation resistance. Furthermore, 89% was achieved for 1Ru-13Ni/14La-Al2O3 at 651 K, but it showed to be more vulnerable to H2S presence

    Catalyst Deactivation And Regeneration Processes In Biogas Tri-Reforming Process. The Effect Of Hydrogen Sulfide Addition

    Get PDF
    This work studies Ni-based catalyst deactivation and regeneration processes in the presence of H2S under a biogas tri-reforming process for hydrogen production, which is an energy vector of great interest. 25 ppm of hydrogen sulfide were continuously added to the system in order to provoke an observable catalyst deactivation, and once fully deactivated two different regeneration processes were studied: a self-regeneration and a regeneration by low temperature oxidation. For that purpose, several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on alumina modified with CeO2 and ZrO2 were used as well as a commercial Katalco 57-5 for comparison purposes. Ni/Ce-Al2O3 and Ni/Ce-Zr-Al2O3 catalysts almost recovered their initial activity. For these catalysts, after the regeneration under oxidative conditions at low temperature, the CO2 conversions achieved79.5% and 86.9%, respectivelywere significantly higher than the ones obtained before sulfur poisoning66.7% and 45.2%, respectively. This effect could be attributed to the support modification with CeO2 and the higher selectivity achieved for the Reverse Water-Gas-Shift (rWGS) reaction after catalysts deactivation. As expected, the bimetallic Rh-Ni/Ce-Al2O3 catalyst showed higher resistance to deactivation and its sulfur poisoning seems to be reversible. In the case of the commercial and Ni/Zr-Al2O3 catalysts, they did not recover their activity.This research was supported by the University of the Basque Country (UPV/EHU), the Central Analysis Service (SGIker) of the UPV/EHU, the Spanish Ministry of Economy and Competitiveness (ENE2014-53566-P), the European Union through the European Regional Development Fund (FEDER) and Naturgas Company (EDP group)

    3D printing of a palladium-alumina cermet monolithic catalyst: catalytic evaluation in microwave-assisted cross-coupling reactions

    Get PDF
    A straightforward manufacture strategy is proposed to obtain an efficient and robust palladium-alumina (Pd0/Al2O3) cermet monolithic catalyst, specifically designed to perform safe microwave assisted organic synthesis (MAOS). In this approach, a cermet catalyst with high surface area, controlled composition and adapted shape and dimensions to a microwave reactor vessel is generated via 3D printing technology and sintering. The resulting catalyst has been explored in heterogeneous Suzuki, Sonogashira, Stille and Heck cross-coupling reactions, in MAOS. The Pd0 catalyst is permanently active, stable, without leaching and can be recycled and reused at least 200 reaction cycles. The generation of hot spots, sparking or hazardous discharges is controlled by the effective immobilization of the palladium in the monolithic structure during the reaction. The palladium content is forming part of both the internal and external structure, providing greater mechanical resistance and catalytic activity with respect to the basic ceramic material (alumina)This work was financially supported by the Consellería de Cultura, Educación e Ordenación Universitaria of the Galician Government: EM2014/022 to A.C., ED431B2016/028 to F.G. The Strategic Grouping AEMAT grant No. ED431E2018/08 and the Spanish Ministry of Science, Innovation and Universities with grant No: MAT2017-90100-C2-1-P "MA thanks Xunta de Galicia and the ERDF (ED431C 2021/21)"S

    Magnetron Sputtered Low-Platinum Loading Electrode as HER Catalyst for PEM Electrolysis

    No full text
    The development of cost-effective components for Proton Exchange Membrane (PEM) electrolyzers plays a crucial role in the transformation of renewable energy into hydrogen. To achieve this goal, two main issues should be addressed: reducing the Platinum Group Metal (PGM) content present on the electrodes and finding a large-scale electrode manufacturing method. Magnetron sputtering could solve these hurdles since it allows the production of highly pure thin films in a single-step process and is a well-established industrial and automated technique for thin film deposition. In this work, we have developed an ultra-low 0.1 mg cm−2 Pt loading electrode using magnetron sputtering gas aggregation method (MSGA), directly depositing the Pt nanoparticles on top of the carbon substrate, followed by a complete evaluation of the electrochemical properties of the sputtered electrode. These ultra-low Pt content electrodes have been thoroughly characterized and tested in a real electrolyzer cell. They demonstrate similar efficiency to commercial electrodes with a Pt content of 0.3 mg/cm2, achieving a 67% reduction in Pt loading. Additionally, durability tests indicate that these electrodes offer greater stability compared to their commercial counterparts. Thus, magnetron sputtering has been proven as a promising technology for manufacturing optimum high-performance electrodes at an industrial scale.This work was supported by the H2PLAN project funded by MCIN and Basque Government with funding from European Union NextGenerationEU (PRTR-C17.I1). Spanish grants PID2020-116712RB-C21 and TED2021-131033B–I00 from MCIN/AEI/10.13039/501100011033 are also acknowledged

    Evolution of project-based learning in small groups in environmental engineering courses

    No full text
    This work presents the assessment of the development and evolution of an active methodology (Project-Based Learning –PBL-) implemented on the course “Unit Operations in Environmental Engineering”, within the bachelor’s degree in Environmental Engineering, with the purpose of decreasing the dropout rate in this course. After the initial design and implementation of this methodology during the first academic year (12/13), different modifications were adopted in the following ones (13-14, 14-15 & 15-16) in order to optimize the student’s and professor’s work load as well as correct some malfunctions observed in the initial design of the PBL. This active methodology seeks to make students the main architects of their own learning processes. Accordingly, they have to identify their learning needs, which is a highly motivating approach both for their curricular development and for attaining the required learning outcomes in this field of knowledge. The results obtained show that working in small teams (cooperative work) enhances each group member’s self–learning capabilities. Moreover, academic marks improve when compared to traditional learning methodologies. Nevertheless, the implementation of more active methodologies, such as project-based learning, in small groups has certain specific characteristics. In this case it has been implemented simultaneously in two different groups of 10 students each one. Such small groups are more heterogeneous since the presence of two highly motivated students or not can vary or affect the whole group’s attitude and academic result

    Graphene-based versus alumina supports on CO2 methanation using lanthanum-promoted nickel catalysts

    No full text
    The valorization of CO2 as a biofuel, transforming it through methanation as part of the power-to-gas (P2G) process, will allow the reduction of the net emissions of this gas to the atmosphere. Catalysts with 13 wt.% of nickel (Ni) loading incorporated into alumina and graphene derivatives were used, and the effect of the support on the activity was examined at temperatures between 498 and 773 K and 10 bar of pressure. Among the graphene-based catalysts (13Ni/AGO, 13Ni/BGO, 13Ni/rGO, 13Ni-Ol/GO, 13Ni/Ol-GO, and 13Ni/Ol-GO Met), the highest methane yield was found for 13Ni/rGO (78% at 810 K), being the only system comparable to the catalyst supported on alumina 13Ni/Al2O3 (89.5% at 745 K). The incorporation of 14 wt.% of lanthanum (La) into the most promising supports, rGO and alumina, led to nickel-support interactions that enhanced the catalytic activity of 13Ni/Al2O3 (89.5% at lower temperature, 727 K) but was not effective for 13Ni/rGO. The resistance against deactivation by H2S poisoning was also studied for these catalysts, and a fast deactivation was observed. In addition, activity recovery was impossible despite the regeneration treatment carried out over catalysts. The resistance against deactivation by H2S poisoning was also studied for these catalysts, observing that both suffered a rapid/immediate deactivation and which in addition/unfortunately was impossible to solve despite the regeneration treatment carried out over catalysts.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was supported by the University of the Basque Country (UPV/EHU), Basque Government (IT1554-22), and Grant PID2020-112889RB-I00 funded by: MCIN/AEI/ 10.13039/501100011033. The authors thank for technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF)
    corecore