51 research outputs found

    The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model

    Get PDF
    The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.Copyright © 2023. Published by Elsevier B.V

    Design, synthesis and antiparasitic evaluation of click phospholipids

    Get PDF
    A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure\u2013activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 \ub5M. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases

    Dynasore, a Dynamin Inhibitor, Inhibits Trypanosoma cruzi Entry into Peritoneal Macrophages

    Get PDF
    BACKGROUND: Trypanosoma cruzi is an intracellular parasite that, like some other intracellular pathogens, targets specific proteins of the host cell vesicular transport machinery, leading to a modulation of host cell processes that results in the generation of unique phagosomes. In mammalian cells, several molecules have been identified that selectively regulate the formation of endocytic transport vesicles and the fusion of such vesicles with appropriate acceptor membranes. Among these, the GTPase dynamin plays an important role in clathrin-mediated endocytosis, and it was recently found that dynamin can participate in a phagocytic process. METHODOLOGY/PRINCIPAL FINDINGS: We used a compound called dynasore that has the ability to block the GTPase activity of dynamin. Dynasore acts as a potent inhibitor of endocytic pathways by blocking coated vesicle formation within seconds of its addition. Here, we investigated whether dynamin is involved in the entry process of T. cruzi in phagocytic and non-phagocytic cells by using dynasore. In this aim, peritoneal macrophages and LLC-MK2 cells were treated with increasing concentrations of dynasore before interaction with trypomastigotes, amastigotes or epimastigotes. We observed that, in both cell lines, the parasite internalization was drastically diminished (by greater than 90% in LLC-MK2 cells and 70% in peritoneal macrophages) when we used 100 microM dynasore. The T. cruzi adhesion index, however, was unaffected in either cell line. Analyzing these interactions by scanning electron microscopy and comparing peritoneal macrophages to LLC-MK2 cells revealed differences in the stage at which cell entry was blocked. In LLC-MK2 cells, this blockade is observed earlier than it is in peritoneal macrophages. In LLC-MK2 cells, the parasites were only associated with cellular microvilli, whereas in peritoneal macrophages, trypomastigotes were not completely engulfed by a host cell plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together our results demonstrate that dynamin is an essential molecule necessary for cell invasion and specifically parasitophorous vacuole formation by host cells during interaction with Trypanosoma cruzi

    “Supposing that truth is a woman, what then?” The Lie Detector, The Love Machine and the Logic of Fantasy

    Get PDF
    One of the consequences of the public outcry over the 1929 St Valentine’s Day massacre was the establishment of a Scientific Crime Detection Laboratory at Northwestern University. The photogenic “Lie Detector Man”, Leonarde Keeler, was the Laboratory’s poster boy and his instrument the jewel in the crown of forensic science. The press often depicted Keeler gazing at a female suspect attached to his “sweat box”; a galvanometer electrode in her hand, a sphygmomanometer cuff on her arm and a rubber pneumograph tube strapped across her breasts. Keeler’s fascination with the deceptive charms of the female body was one he shared with his fellow lie detector pioneers, all of whom met their wives – and in William Marston’s case his mistress too – through their engagement with the instrument. Marston employed his own “Love Meter”, as the press dubbed it, to prove that “brunettes react far more violently to amatory stimuli than blondes”. In this paper I draw on the psychoanalytic concepts of fantasy and pleasure to argue that the female body played a pivotal role in establishing the lie detector’s reputation as an infallible and benign mechanical technology of truth

    Development of an Improved 3D in vitro Intestinal Model to Perform Permeability Studies of Paracellular Compounds

    No full text
    The small intestine is the primary site of drug absorption following oral administration, making paramount the proper monitoring of the absorption process. In vitro tools to predict intestinal absorption are particularly important in preclinical drug development since they are less laborious and cost-intensive and raise less ethical considerations compared to in vivo studies. The Caco-2 model is considered the gold standard of in vitro intestinal models regarding the prediction of absorption of orally delivered compounds. However, this model presents several drawbacks, such as the expression of tighter tight junctions, not being suitable to perform permeability of paracellular compounds. Besides, cells are representative of only one intestinal cell type, without considering the role of non-absorptive cells on the absorption pathway of drugs. In the present study, we developed a new three-dimensional (3D) intestinal model that aims to bridge the gap between in vitro tools and animal studies. Our 3D model comprises a collagen layer with human intestinal fibroblasts (HIFs) embedded, mimicking the intestinal lamina propria and providing 3D support for the epithelium, composed of Caco-2 cells and mucus-producing HT29-MTX cells, creating a model that can better resemble, both in terms of composition and regarding the outcomes of drug permeability when testing paracellular compounds, the human small intestine. The optimization of the collagen layer with HIFs was performed, testing different collagen concentrations and HIF seeding densities in order to avoid collagen contraction before day 14, maintaining HIF metabolically active inside the collagen disks during time in culture. HIF morphology and extracellular matrix (ECM) deposition were assessed, confirming that fibroblasts presented a normal and healthy elongated shape and secreted fibronectin and laminin, remodeling the collagen matrix. Regarding the epithelial layer, transepithelial electrical resistance (TEER) values decreased when cells were in the 3D configuration, comparing with the 2D analogs (Caco-2 and coculture of Caco-2+HT29-MTX models), becoming more similar with in vivo values. The permeability assay with fluorescein isothiocyanate (FITC)–Dextran 4 kDa showed that absorption in the 3D models is significantly higher than that in the 2D models, confirming the importance of using a more biorelevant model when testing the paracellular permeability of compounds.This work was financed by Portuguese funds through FCT – Fundação para a CiĂȘncia e a Tecnologia/MinistĂ©rio da CiĂȘncia, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” UID/BIM/04293/2019. MM would like to thank FCT for financial support (SFRH/BD/131587/2017)

    Bottom-up engineering of cell-laden hydrogel microfibrous patch for guided tissue regeneration

    No full text
    The development of three-dimensional (3D) fibrous networks as platforms for tissue engineering applications has been attracting considerable attention. Opportunely arranged microscaled fibers offer an appealing biomimetic 3D architecture, with an open porous structure and a high surface-to-volume ratio. The present work describes the development of modified-alginate hydrogel microfibers for cell entrapment, using a purpose-designed flow circuit. For microfibers biofabrication, cells were suspended in gel-precursor alginate solution and injected in a closed-loop circuit with circulating cross-linking solution. The flow promoted stretching and solidification of continuous cell-loaded micro-scaled fibers that were collected in a strainer, assembling into a microfibrous patch. The process was optimized to allow obtaining a self-standing cohesive structure. After characterization of the microfibrous patch, the behavior of embedded human mesenchymal stem cells (hMSCs) was evaluated. Microfibers of oxidized alginate modified with integrin-binding ligands provided a suitable 3D cellular microenvironment, supporting hMSCs survival and stimulating the production of endogenous extracellular matrix proteins, such as fibronectin and collagen Type I. Collectively, these features make the proposed microfibrous structures stand out as promising 3D scaffolds for regenerative medicine

    Xeno-free pre-vascularized spheroids for therapeutic applications

    No full text
    Spheroid culture has gained increasing popularity, arising as a promising tool for regenerative medicine applications. Importantly, spheroids may present advantages over single-cell suspensions in cell-based therapies (CT). Unfortunately, most growth media used for spheroid culture contain animal origin-components, such as fetal bovine serum (FBS). The presence of FBS compromises the safety of CT and presents economic and ethical constraints. SCC (supplement for cell culture) is a novel xeno-free (XF) industrial cell culture supplement, derived from well-controlled pooled human plasma and processed under good manufacturing practice rules. Here, we developed a XF SCC-based formulation for 2D-culture of outgrowth endothelial cells (OEC), and then used it for generating co-culture spheroids of OEC and mesenchymal stem cells (MSC). XF MSC-OEC spheroids were characterized in detail and compared to spheroids cultured in FBS-supplemented medium. XF spheroids presented comparable integrity, size and morphology as the reference culture. The use of both media resulted in spheroids with similar structure, abundant extracellular matrix deposition and specific patterns of OEC distribution and organization. Notably, XF spheroids presented significantly enhanced angiogenic potential, both in vitro (fibrin sprouting assay) and in vivo (CAM assay). These findings are particularly promising in the context of potential therapeutic applications.This work was supported by: i) European Regional Development Fund (ERDF) through COMPETE 2020 -Operacional Programme for Competitiveness and Internationalisation (POCI), in the framework of project NORTE-01- 0145-FEDER-000012, funded by North Portugal Regional Operational Program (Norte2020) under PORTUGAL2020 Partnership Agreement; ii) European Union 7th Framework Programme, under the Marie Curie Initial Training Programme Network IB2 (MC ITN-EID nÂș317052[ABP1]) (Ewa Bauman scholarship); iii) Project 3DEMT funded by POCI via FEDER (POCI-01-0145-FEDER-016627) and by FCT via OE (PTDC/BBBECT/251872014). CC Barrias acknowledges FCT for her research position FCT Investigator (IF/00296/2015). The authors acknowledge Eduardo A. Silva (UC Davis, US) for providing OEC; and i3S Scientific platforms “b.IMAGE”, “In vivo CAM assays” and “Histology and Electron Microscopy” for service providence

    Xeno-free pre-vascularized spheroids for therapeutic applications

    Get PDF
    Abstract Spheroid culture has gained increasing popularity, arising as a promising tool for regenerative medicine applications. Importantly, spheroids may present advantages over single-cell suspensions in cell-based therapies (CT). Unfortunately, most growth media used for spheroid culture contain animal origin-components, such as fetal bovine serum (FBS). The presence of FBS compromises the safety of CT and presents economic and ethical constraints. SCC (supplement for cell culture) is a novel xeno-free (XF) industrial cell culture supplement, derived from well-controlled pooled human plasma and processed under good manufacturing practice rules. Here, we developed a XF SCC-based formulation for 2D-culture of outgrowth endothelial cells (OEC), and then used it for generating co-culture spheroids of OEC and mesenchymal stem cells (MSC). XF MSC-OEC spheroids were characterized in detail and compared to spheroids cultured in FBS-supplemented medium. XF spheroids presented comparable integrity, size and morphology as the reference culture. The use of both media resulted in spheroids with similar structure, abundant extracellular matrix deposition and specific patterns of OEC distribution and organization. Notably, XF spheroids presented significantly enhanced angiogenic potential, both in vitro (fibrin sprouting assay) and in vivo (CAM assay). These findings are particularly promising in the context of potential therapeutic applications
    • 

    corecore