7 research outputs found

    INJECTABLE HYBRID SYSTEM FOR STRONTIUM LOCAL DELIVERY TO PROMOTE BONE REGENERATION

    Get PDF
    In bone tissue regeneration strategies, injectable bone substitutes are very attractive since they can be applied with minimally invasive surgical procedures and can perfectly fill irregular defects created in cases of trauma, infection or tumor resection. These materials must combine adequate mechanical properties with the ability to induce new bone formation. Incorporating strontium (Sr) in bone substitute biomaterials may be a strategy to achieve high Sr concentrations, not in a systemic but in a local environment, taking advantage of the osteoanabolic and anti-osteoclastic activity of Sr, for the enhancement of new bone formation. In this context, the aim of the present work was to evaluate the response of a Sr-hybrid injectable system for bone regeneration, designed by our group, consisting of hydroxyapatite microspheres doped with Sr and an alginate vehicle crosslinked in situ with Sr, in an in vivo scenario. Two different animal models were used, rat (Wistar) and sheep (Merino Branco) critical sized bone defect. Non Sr-doped similar materials (Ca-hybrid) or empty defects were used as control. Sr-hybrid system led to an increased bone formation in both center and periphery of a rat critical sized defect compared to a non Sr–doped similar system, where new bone formation was restricted to the periphery. Moreover newly formed bone was identified as early as one week after its implantation in a sheep model. After eight weeks, the bone surrounded the microspheres, both in the periphery and in the center of the defect. Most importantly, the hybrid system provided a scaffold for cell migration and tissue ingrowth and offered structural support, as observed in both models. The effective improvement of local bone formation suggests that this might be a promising approach for bone regeneration, especially in osteoporotic conditions

    Calcium phosphate-alginate microspheres as enzyme delivery matrices

    Get PDF
    The present study concerns the preparation and initial characterisation of novel calcium titanium phosphate-alginate (CTPalginate) and hydroxyapatite-alginate (HAp-alginate) microspheres, which are intended to be used as enzyme delivery matrices and bone regeneration templates. Microspheres were prepared using different concentrations of polymer solution (1% and 3% w/v) and different ceramic-to-polymer solution ratios (0.1, 0.2 and 0.4 w/w). Ceramic powders were characterised using X-ray diffraction, laser granulometry, Brunauer, Emmel and Teller (BET) method for the determination of surface area, zeta potential and Fourier transform infrared spectroscopy (FT-IR). Alginate was characterised using high performance size exclusion chromatography. The methodology followed in this investigation enabled the preparation of homogeneous microspheres with a uniform size. Studies on the immobilisation and release of the therapeutic enzyme glucocerebrosidase, employed in the treatment of Gaucher disease, were also performed. The enzyme was incorporated into the ceramic-alginate matrix before gel formation in two different ways: preadsorbed onto the ceramic particles or dispersed in the polymeric matrix. The two strategies resulted in distinct release profiles. Slow release was obtained after adsorption of the enzyme to the ceramic powders, prior to preparation of the microspheres. An initial fast release was achieved when the enzyme and the ceramic particles were dispersed in the alginate solution before producing the microspheres. The latter profile is very similar to that of alginate microspheres. The different patterns of enzyme release increase the range of possible applications of the system investigated in this work.info:eu-repo/semantics/publishedVersio

    Microstructured click hydrogels for cell contact guidance in 3D

    No full text
    The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made from a single polymer. Herein, we report the design of microstructured alginate hydrogels for injectable cell delivery and show their ability to orchestrate morphogenesis via cellular contact guidance in 3D. Alginate was grafted with hydrophobic cyclooctyne groups (ALG-K), yielding amphiphilic derivatives with self-associative potential and ionic crosslinking ability. This allowed the formation of microstructured ALG-KH hydrogels, triggered by the spontaneous segregation between hydrophobic/hydrophilic regions of the polymer that generated 3D networks with stiffer microdomains within a softer lattice. The azide-reactivity of cyclooctynes also allowed ALG-K functionalization with bioactive peptides via cytocompatible strain-promoted azide-alkyne cycloaddition (SPAAC). Hydrogel-embedded mesenchymal stem cells (MSCs) were able to integrate spatial information and to mechano-sense the 3D topography, which regulated cell shape and stress fiber organization. MSCs clusters initially formed on microstructured regions could then act as seeds for neo-tissue formation, inducing cells to produce their own ECM and self-organize into multicellular structures throughout the hydrogel. By combining 3D topography, click functionalization, and injectability, using a single polymer, ALG-K hydrogels provide a unique cell delivery platform for tissue regeneration

    Engineering Endochondral Bone: In Vitro Studies

    No full text
    Chitosan scaffolds have been shown to possess biological and mechanical properties suitable for tissue engineering and clinical applications. In the present work, chitosan sponges were evaluated regarding their ability to support cartilage cell proliferation and maturation, which are the first steps in endochondral bone formation. Chitosan sponges were seeded with chondrocytes isolated from chicken embryo sterna. Chondrocyte/chitosan constructs were cultured for 20 days, and treated with retinoic acid (RA) to induce chondrocyte maturation and matrix synthesis. At different time points, samples were collected for microscopic, histological, biochemical, and mechanical analyses. Results show chondrocyte attachment, proliferation, and abundant matrix synthesis, completely obliterating the pores of the sponges. RA treatment caused chondrocyte hypertrophy, characterized by the presence of type X collagen in the extracellular matrix and increased alkaline phosphatase activity. In addition, hypertrophy markedly changed the mechanical properties of the chondrocyte/chitosan constructs. In conclusion, we have developed chitosan sponges with adequate pore structure and mechanical properties to serve as a support for hypertrophic chondrocytes. In parallel studies, we have evaluated the ability of this mature cartilage scaffold to induce endochondral ossification
    corecore