4,704 research outputs found

    Wavelet probabilistic neural networks

    Get PDF
    In this article, a novel wavelet probabilistic neural network (WPNN), which is a generative-learning wavelet neural network that relies on the wavelet-based estimation of class probability densities, is proposed. In this new neural network approach, the number of basis functions employed is independent of the number of data inputs, and in that sense, it overcomes the well-known drawback of traditional probabilistic neural networks (PNNs). Since the parameters of the proposed network are updated at a low and constant computational cost, it is particularly aimed at data stream classification and anomaly detection in off-line settings and online environments where the length of data is assumed to be unconstrained. Both synthetic and real-world datasets are used to assess the proposed WPNN. Significant performance enhancements are attained compared to state-of-the-art algorithms

    First observation and measurement of the resonant structure of the lambda_b->lambda_c pi-pi+pi- decay mode

    Full text link
    We present the first observation of the lambda_b->lambda_c pi-pi+pi- decay using data from an integrated luminosity of approximately 2.4 fb-1 of ppbar collisions at ECM=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. We also present the first observation of the resonant decays lambda_b->sigma_c(2455)0 pi+pi- ->lambda_c pi-pi+pi-, lambda_b->sigma_c(2455)++ pi-pi- ->lambda_c pi-pi+pi-, lambda_b->lambda_c(2595)+ pi- ->lambda_c pi-pi+pi- and lambda_b->lambda_c(2625)+ pi- ->lambda_c pi-pi+pi-, and measure their relative branching ratios.Comment: 3 pages, 3 figures, to appear in the proceedings of LEPTON PHOTON 2009, Hamburg, German

    The planktonic ciliate community and its relationship with the environmental conditions and water quality in two bays of the Beagle Channel, Argentina

    Get PDF
    The relationship between the ciliate community and the environmental variables in Ushuaia and Golondrina bays (54º79′S 68º22′W and 54º85′S 68º36′W, respectively) in the Beagle Channel, Argentina was investigated. The study was performed inthree zones within the bays, previously delimited on the basis of their water quality. The most perturbed sites were located inshore. In order to analyse the contribution of each species to the similarity or dissimilarity between zones, similarity percentages analysis was undertaken using the Bray-Curtis similarity index. The variations in species composition and dominance in the selected zones were examined by the abundance–biomass comparison plot. We also studied the relationship between environmental and ciliates variability. The ciliate community comprised a total of 43 species belonging to 15 genera. Ciliate abundance and biomass varied temporally and spatially. A more diverse community dominated by small and opportunistic species tolerant to environmental changes was found in the most perturbed zone, while in the less stressed zone the community comprised bigger species, probably adapted to more stable environmental conditions. A community comprising species from both zones was found in a transitional area. We conclude that the structure of the community varied closely with environmental conditions.Fil: Barria, Maria Sonia. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); ArgentinaFil: López Abbate, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca. Instituto Argentino de Oceanografia (i); ArgentinaFil: Pettigrosso, R. E. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Hoffmeyer, Monica Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentin

    Transcription factor Pebbled/RREB1 regulates injury-induced axon degeneration

    Get PDF
    Genetic studies of Wallerian degeneration have led to the identification of signaling molecules (e.g., dSarm/Sarm1, Axundead, and Highwire) that function locally in axons to drive degeneration. Here we identify a role for the Drosophila C2H2 zinc finger transcription factor Pebbled [Peb, Ras-responsive element binding protein 1 (RREB1) in mammals] in axon death. Loss of Peb in Drosophila glutamatergic sensory neurons results in either complete preservation of severed axons, or an axon death phenotype where axons fragment into large, continuous segments, rather than completely disintegrate. Peb is expressed in developing and mature sensory neurons, suggesting it is required to establish or maintain their competence to undergo axon death. peb mutant phenotypes can be rescued by human RREB1, and they exhibit dominant genetic interactions with dsarm mutants, linking peb/RREB1 to the axon death signaling cascade. Surprisingly, Peb is only able to fully block axon death signaling in glutamatergic, but not cholinergic sensory neurons, arguing for genetic diversity in axon death signaling programs in different neuronal subtypes. Our findings identify a transcription factor that regulates axon death signaling, and peb mutant phenotypes of partial fragmentation reveal a genetically accessible step in axon death signaling

    Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction

    Get PDF
    Glial cells are emerging as important regulators of synapse formation, maturation, and plasticity through the release of secreted signaling molecules. Here we use chromatin immunoprecipitation along with Drosophila genomic tiling arrays to define potential targets of the glial transcription factor Reversed polarity (Repo). Unexpectedly, we identified wingless (wg), a secreted morphogen that regulates synaptic growth at the Drosophila larval neuromuscular junction (NMJ), as a potential Repo target gene. We demonstrate that Repo regulates wg expression in vivo and that local glial cells secrete Wg at the NMJ to regulate glutamate receptor clustering and synaptic function. This work identifies Wg as a novel in vivo glial-secreted factor that specifically modulates assembly of the postsynaptic signaling machinery at the Drosophila NMJ

    The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy

    Full text link
    NIKA2 (New IRAM KID Array 2) is a camera dedicated to millimeter wave astronomy based upon kilopixel arrays of Kinetic Inductance Detectors (KID). The pathfinder instrument, NIKA, has already shown state-of-the-art detector performance. NIKA2 builds upon this experience but goes one step further, increasing the total pixel count by a factor \sim10 while maintaining the same per pixel performance. For the next decade, this camera will be the resident photometric instrument of the Institut de Radio Astronomie Millimetrique (IRAM) 30m telescope in Sierra Nevada (Spain). In this paper we give an overview of the main components of NIKA2, and describe the achieved detector performance. The camera has been permanently installed at the IRAM 30m telescope in October 2015. It will be made accessible to the scientific community at the end of 2016, after a one-year commissioning period. When this happens, NIKA2 will become a fundamental tool for astronomers worldwide.Comment: Proceedings of the 16th Low Temperature Detectors workshop. To be published in the Journal of Low Temperature Physics. 8 pages, 4 figures, 1 tabl

    Study of Z boson production in pPb collisions at √sNN = 5.02 TeV

    Get PDF
    © 2016 The Author.The production of Z bosons in pPb collisions at sNN=5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions
    corecore