
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 1

Wavelet Probabilistic Neural Networks
E. S. Garcı́a-Treviño, Pu Yang, and J. A. Barria*

Abstract—In this paper, a novel Wavelet Probabilistic Neural
Network (WPNN), which is a generative-learning wavelet neural
network that relies on the wavelet-based estimation of class
probability densities, is proposed. In this new neural network
approach the number of basis functions employed is independent
of the number of data inputs and, in that sense, it overcomes
the well-known drawback of traditional Probabilistic Neural
Networks (PNN). Since the parameters of the proposed network
are updated at a low and constant computational cost, it is
particularly aimed at data stream classification and anomaly
detection in offline settings and online environments where the
length of data is assumed to be unconstrained. Both synthetic
and real-world datasets are used to assess the proposed WPNN.
Significant performance enhancements are attained compared to
state-of-the-art algorithms.

Index Terms—Probabilistic neural network, Wavelet den-
sity estimation, Wavelet frames, Wavelet probabilistic neural
networks, Data stream classification, Online learning, Non-
stationary environment.

I. INTRODUCTION

THE Probabilistic Neural Network (PNN), introduced by
Specht in [1], is a well known neural network archi-

tecture widely applied in machine learning problems [2],
which unify several different research areas such as function
approximation, density estimation and regularisation theory.
PNNs use the Bayes decision rule [2] and Parzen’s approach
to estimate the class density in a non-parametric manner [3].
PNNs have become an effective tool for solving classifica-
tion problems due to their simplicity, efficiency, and ease
of model training [4]. PNN can provide a faster one-pass
learning process without the use of any back-propagation-
based algorithm [5]. Moreover, in data streams classification
and anomaly detection tasks, where class labels might not
be balanced, the architecture of a PNN, which can handle
imbalanced classification tasks, is more advantageous than
feed-forward neural networks.

The Orthogonal Series Estimator (OSE) [6], is a class of
non-parametric estimator whose most relevant aspect is its low
computation cost while, its major drawback is its inability to
estimate local properties of the underlying density distribution.
A subset of the OSE, the so-called Wavelet Density Estimator
(WDE), inherits the good localisation capabilities (in time and
frequency) of wavelet functions, while allowing local learning

The First Author was with the Department of Electrical and Electronic
Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
He is now with U. Maya, 29060 Tuxtla Gutiérrez, Chiapas, México.

The Second and Third Authors are with the Department of Electrical and
Electronic Engineering, Imperial College London, London SW7 2AZ, United
Kingdom

*Corresponding author:
Tel: +44 (0)207 594 6275
E-mail address: j.barria@imperial.ac.uk (J.A. Barria)

and local manipulation of the estimated density (see [7] for an
overview). As it is pointed out in [8], since WDEs incorporate
the advantages of wavelets and multiresolution analysis, they
are superior to other OSEs. Wavelet Density Estimators offer
flexibility in terms of convergence and smoothness, due to the
availability of several families of orthogonal wavelet functions
that can be used in the estimator. However, the available
orthogonal functions do not have an analytical form, therefore,
recursive algorithms with a high computational burden are
required for evaluating these type of functions.

The well known key drawback of standard PNN [1] is the
fact that one separate neuron is needed for each training data
point. Hence, for classification problems involving millions of
data points, the amount of computational resources required by
the network becomes prohibitive [9]. The strategies to reduce
complexity within the framework of a PNN can be categorised
into two main groups. The first group includes: i) the ap-
proaches based on the representation of the original dataset
by a new one with smaller cardinality while maintaining the
statistical properties of the original one [10], and ii) removing
features that have few contributions to the classification [11].
The second group considers methods based on the complexity
simplification of the estimator by reducing its corresponding
number of kernel components. In [11] sensitivity analysis has
been applied to a PNN to reduce the number of features from
the dataset as well as the pattern neurons of the PNN. However,
it is designed only for offline settings. In [12] a Fourier
series-based OSE is proposed to reduce the complexities of
the PWE. Unfortunately, it can only be applied to single
dimensions, and hence only uncorrelated features can be fed
to the algorithm. We further note that, in some real-world
settings, a neural network framework might be affected by
intrinsic time-delays. In this context, the stability analysis for
a time-delayed system [13], [14], has been recently applied
for delayed neural networks [15], [16].

In this paper, we address the key drawback of PNNs by
following a radically different approach. Specifically, we re-
formulate PNNs in order to rely on a novel density estimation
paradigm that does not require one neuron for each training
sample. This novel probabilistic neural network approach is
based on a new density estimation approach based on wavelets.
There is a great amount of work combining wavelets with
artificial neural networks. In general, we can categorise all
the related research work into two main categories. The first
category includes all the work in which the wavelet method
is used as a feature extraction/reduction block which is then
followed by a neural network classifier. Note here that the
wavelet block is not part of the neural network, which means
that the training of the network does not involve adjusting
any parameter of the wavelet block. Note also that the neural
network classifier could be a feed-forward neural network or a

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 2

KDE-based probabilistic neural network. The second category
of papers combines wavelets and neural networks, but it is not
formulated in probabilistic terms. To the best of our knowl-
edge, the majority of the approaches from the second category
are based on the seminal work of Zhang and Benveniste [17],
which uses wavelets as activation functions in a feed-forward
neural network structure. We note that this wavelet network
paradigm is not formulated in probabilistic terms, and hence
it does not require the estimation of any class-conditional
probabilities as it is for the proposed approach.

The combination of PNNs and wavelets has been well
studied in applications that include fault diagnosis, fingerprint
recognition, and power systems. Wavelets are used to extract
features in [18], [19], or as coefficients for the densities
calculations in [20]. In all these applications, wavelets are not
part of the neural network structure, as the density estimation
paradigm is still based on kernel density estimation. Further,
discriminative learning approaches, e.g. [17], [20], use back-
propagation to optimise the decision boundaries but do not
estimate the class conditional probabilities. To the best of
our knowledge, the proposed WPNN framework is the first
attempt to formulate a probabilistic neural network based on
wavelet density estimators, in which wavelets are an intrinsic
part of the network involved in estimating the class-conditional
probabilities of each class. In this type of network, the
coefficients of the wavelet basis functions are optimised by
the learning algorithm. The proposed WPNN is a generative-
learning-based wavelet neural network, which relies on the
wavelet-based estimation of the class probability densities.

The proposed WPNN is based on a WDE proposed by
Garcı́a-Treviño et al. 2019 [21], namely the Radial Wavelet
Frame Density Estimator (RWFDE), which utilises the radial
B-splines scaling function to estimate the probability density
function. This novel estimator renders analytic solutions and
its formulation is suitable for multidimensional analysis. It is
able to deal with larger data dimensions that involve more
features, and more relevantly, it has good localisation capabil-
ities and good sparsity with low and constant computational
complexity. Therefore, the RWFDE enables the application of
WDE within a PNN and reduces the computational burden of
the standard PNN. This WPNN formulation is constructed by
replacing the Parzen Windows Estimator (PWE) used in the
PNN by the RWFDE.

Two are the main contributions of this paper. The first one
is the performance enhancement of PNN by reformulating the
network components. Note that PNNs that rely on a density
estimator approach based on scaling functions have not been
investigated before due to the lack of a suitable wavelet-based
approach for multidimensional problems. Therefore, WPNN is
the first wavelet neural network based on generative learning
concepts. The second contribution is providing a novel online
learning approach for anomaly detection and data stream
classification while maintaining constant computation time and
low computational complexity, which is perfectly suitable for
real-world applications. In this paper, we define the structure
of this novel probabilistic neural network approach as well
as we formulate and integrate all the necessary blocks and
computational operations required in order to perform the

offline and online classification of input data.
The proposed WPNN benefits from the robust approxima-

tion capabilities provided by its established multiresolution
analysis framework. Moreover, the model parameters can be
updated instantly once a new data point arrives, as its training
and evaluation processes have constant and low computation
time. Note also that for the WPNN, the number of wavelet
functions is independent of the number of inputs and hence
perfectly suitable for anomaly detection, fast online classifica-
tion for data streams or time series, where the data is ordered
by timestamps with rapid arrival rate, the length is assumed to
be infinite, and its statistical properties might vary over time.

The rest of the paper is organised as follows. In Section
II, the theoretical background for the proposed WPNN is
briefly reviewed. The formulation of WPNN is described in
Section III. Section IV includes the set of experiments to
assess the performance of the proposed framework. Finally,
the conclusions of this work are presented in Section V.

II. THEORETICAL BACKGROUND

A. Probabilistic Neural Networks (PNN)

The key idea behind PNNs is the approximation of class-
conditional distributions of input data by a mixture of compo-
nents density estimation, where the mixture components are
interpreted as probabilistic neurons. There are four layers in
this type of neural network with input, pattern, summation
and output units in each layer, respectively. Assuming n-
dimensional input data of the form x ∈ RT×n, where |T |
refers to the cardinality of x, and n is the data dimension. The
first layer distributes input to all pattern units. The second layer
forms groups associated with a specific class cq . The activation
function for the pattern units is the Gaussian basis function de-
fined by fq,l(x) = 1

(2π)n/2σn exp(− 1
2σ2 (x−xq,l)

T (x−xq,l))

with q = 1, . . . , C, l = 1, ..., Nq , where C is the total number
of classes, Nq is the number of pattern units for a given class
cq , and n is the data dimension. Here, the smoothing factor σ is
the parameter that controls the receptive field of the Gaussian
function. Note that both the input vector x and the centres
xq,l of the Gaussian functions are n-dimensional. Note also
that the total number of pattern units is equal to the sum of
the pattern units for all classes.

The outputs of the pattern units, that belong to the same
class, are connected to the summation units on the third layer
corresponding to that specific class. Assuming a uniform prior
distribution for each class, then each summation unit estimates
the class-conditional probability density function for class cq
is defined by p̂q(x|cq) = 1

(2π)n/2σn
1
Nq

∑Nq

l=1 exp(− 1
2σ2 (x −

xq,l)
T (x − xq,l)) where xq,l is the l-th training vector from

class cq , x is the test input vector, n is the data dimension
and Nq is the number of training patterns in class cq . Note
that each vector xq,l is assumed to be the centre of a Gaussian
function.

Once p̂q(x|cq) has been estimated for all classes using the
available training data, then the best classifier defined by the
Bayesian decision rule can be obtained. In the output units
on the fourth layer, a Bayesian decision rule of the form:
d(x) = arg maxq{P (cq)p̂q(x|cq)}, with q = 1, . . . , C is

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 3

applied to distinguish the class cq associated with the input
vector x, where P (cq) is the a priori class probability, which
in many applications is known or otherwise is usually assumed
uniform for all classes. Note that the above decision rule
minimises the probability of classification error and that the
training procedure of the PNN is, in fact, the construction of
the network for some available training data.

B. Wavelets and Multiresolution analysis

Wavelet analysis projects and approximates the data onto
a subspace using a group of basis functions in order to
provide different levels of information. In the Discrete Wavelet
Transform (DWT), which is one of the most important algo-
rithms that utilises wavelet analysis [22], data is separated
into two different scales, fine-scale and coarse-scale. This
multiresolution separation is done using detail coefficients
and approximation coefficients to project the data onto an
orthogonal dyadic basis system [23].

Multiresolution analysis is the foundation for DWT, it
approximates data at different levels of resolution by orthog-
onally projecting them onto different spaces {Vj}j∈Z and
{Wj}j∈Z. Note, the space Wj is the complement of the
space Vj in Vj+1. The two orthonormal bases constructed
by a scaling function φ and a wavelet function ψ are required
to perform the projection. The dilated and translated version
of the orthonormal basis for the space Vj is defined as
φj,k(x) = 2j/2φ(2jx− k), and the orthonormal basis for the
space Wj is defined as ψj,k(x) = 2j/2ψ(2jx− k).

In practice, a signal f(x) at resolution 20 after DWT has the
form f(x) =

∑
k aJ,kφJ,k(x) +

∑J
j=0

∑
k dj,kψj,k(x), where

aJ,k denotes the approximation coefficient at resolution 2J ,
and dj,k denotes the wavelet coefficient at resolution 2j . Note,
that the coefficients aJ,k and dj,k can be expressed as: aJ,k =
〈f(x), φJ,k(x)〉, dj,k = 〈f(x), ψj,k(x)〉 with J, j, k ∈ Z. The
operator 〈.〉 denotes the inner product in the space of square
integrable functions L2(R).

C. Wavelet Density Estimators (WDEs)

Density estimation, which is one of the fundamental prob-
lems in statistics, has been thoroughly studied in the literature,
(see for example [24], [25]). WDEs is a subclass of the Orthog-
onal Series Estimators (OSEs) [6] that estimate an unknown
square-integrable density function p(x) by using a series of
orthogonal basis function: p(x) =

∑
j bjψj(x), where bj is the

coefficient of the jth basis function, ψj is the basis functions
in L2(R), and J is an appropriate set of indices that belongs to
Z. If p(x) is a probability density function, then the coefficient
bj can be expressed as the expectation of the basis functions:
bj = 〈p, ψj〉 =

∫
ψj(x)p(x)dx = E[ψj(X)]. Therefore,

if there exist a group of random variables Xi, i ∈ [1, N],
with an unknown square-integrable density function p(x), the
approximated jth coefficient in the OSEs can be expressed
as b̂j = 1

N

∑N
i=1 ψj(Xi). Consequently, the approximated

density p̂(x) can be calculated by: p̂(x) =
∑
j b̂jψj(x).

The concepts above described also apply to WDEs, but
WDEs can use both scaling functions φ and wavelet func-
tions ψ. Therefore, in WDEs, the scaling and wavelet co-

efficients can be approximated and expressed as: âj0,k =
1
N

∑N
i=0 φj0,k(Xi) and d̂j,k = 1

N

∑N
i=0 ψj,k(Xi), respec-

tively, where j0 indicates the coarsest scale or the lowest
resolution of analysis, and J refers to the finest scale or the
highest resolution. Hence, the density can be approximated
using one of the following three approaches: 1) using only
scaling functions with p̂(x) =

∑
k âj0,kφj0,k(x); 2) using

only wavelet functions with p̂(x) =
∑J
j=0

∑
k d̂j,kψj,k(x);

and 3) using both scaling and wavelet functions with p̂(x) =∑
k âj0,kφj0,k(x) +

∑J
j=j0

∑
k d̂j,kψj,k(x). The proposed

WPNN utilises RWFDE with only scaling functions that
provides a novel PNN configuration with lower computational
complexity.

D. Wavelet Neural Networks (WNNs)

WNNs are a special class of neural networks that replace
the activation functions of feed-forward neural networks with
more powerful computing units based on wavelet transform.
These networks have been thoroughly investigated as an
alternative approach to traditional neural networks that rely
on sigmoidal activation functions. WNNs have attracted great
interest, since they incorporate some key advantages of wavelet
theory (i.e., multiresolution analysis, functions with good
localisation in time and frequency, sparse representation of
functions). The seminal work in the context of WNNs is the
(1 + 1

2) layer neural network based on wavelets [17] that
not only preserves the universal approximation property of
neural networks, but also establishes an explicit link between
the network coefficients and some appropriate transform [17].
In WNNs, the learning is performed by the standard back-
propagation type algorithm as in traditional feed-forward neu-
ral networks.

A comprehensive taxonomy for WNNs organized according
to the type of basis function employed is proposed in [26].
As discussed in [27], studies on wavelets have been mostly
concentrated in one or two-dimensional wavelets. The reason
for this is the heavy computational cost associated with the
implementation of multidimensional wavelet transforms. For
multidimensional problems, WNNs usually constructs multidi-
mensional wavelets based on computing the tensor product be-
tween one-dimensional wavelets [17]. An alternative approach
for multidimensional wavelets was investigated by Kugarajah
and Zhang [27]. This approach is based on the use of one-
dimensional radial wavelets to reduce the computational com-
plexity of the network.

E. Multidimensional frames for neural networks

As discussed in [21], a sequence {Φn}n∈Γ is a wavelet
frame if A ‖f‖2 6

∑
n∈Γ |〈f,Φ〉|

2 6 B ‖f‖2 where Γ is an
index set, f ∈ H, A and B are two constants with B > A > 0.
If the above expression holds, a signal f can be recovered in
a Hilbert space H by using the frame {Φn}n∈Γ.

The construction of multidimensional wavelet frames for
use in neural networks was studied by [27], where two
approaches to generalise a one-dimensional wavelet frame to
the multidimensional case are proposed. The first approach
uses only one dilation parameter for all dimensions, whereas

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 4

the second approach assigns different dilation parameter for
each dimension. These two approaches are named single-
scaling and multi-scaling, respectively.

The RWFDE estimator proposed by Garcı́a-Treviño et al.
uses a single-scaling dilation parameter to construct a multi-
dimensional frame with a reduced computational complexity.

F. Radial Wavelet Frames Density Estimators

The key idea of RWFDE is the use of Radial B-spline
scaling functions, which are a type of novel multidimensional
scaling functions, and defined as [21]:

Φj0,k(x) = 2
nj0
2 Nm

(
‖(2j0x− k)‖+

m

2

)
(1)

where n ∈ Z is the data dimension of x , j0 ∈ Z is the dilation
or scale parameter, and k ∈ Zn is a vector of translation
parameters. The m-th order cardinal B-spline Nm(x) can be
obtained by using the convolution:

N1(x) =

{
1 for 0 ≤ x < 1

0 otherwise
(2)

Nm(x) =

∫ ∞
−∞

Nm−1N1(t)dt =

∫ 1

0

Nm−1(x− t)dt (3)

One of the advantages of using the B-spline functions is that
they have explicit closed-form solutions. The analytic closed-
form solutions of the first three order B-spline function Nm(x)
can be found in Table I, where φ(x) refers to different orders
of Nm(x).

TABLE I: Explicit expressions for B-spline functions.

Order B-spline function

Linear φ(x) =

x for 0 ≤ x < 1

2− x for 1 ≤ x < 2

0 otherwise

Quadratic φ(x) =

1
2
x2 for 0 ≤ x < 1

3
4
− (x− 3

2
)2 for 1 ≤ x < 2

1
2
(x− 3)2 for 2 ≤ x < 3

0 otherwise

Cubic φ(x) =

1
6
x3 for 0 ≤ x < 1

1
6
(−3x3 + 12x2 − 12x+ 4) for 1 ≤ x < 2

1
6
(3x3 − 24x2 + 60x− 44) for 2 ≤ x < 3

1
6
(4− x)3 for 3 ≤ x < 4

0 otherwise

1) Density Estimation: The density estimation process is
based on the wavelet frame theory discussed in Section II-E,
where a function f(x) in L2(R) can be approximated using a
basis of scaling functions. To begin with, the coefficients wj0,k
is calculated from the inner product between the function f(x)
and the frame function {Φj0,k}j0,k∈Z:

wj0,k = 〈f,Φj0,k〉 =

∫
f(x)Φj0,k(x)dx (4)

If the function f(x) is replaced by the density function p(x),
(4) becomes:

wj0,k =

∫
p(x)Φj0,k(x)dx (5)

Given a group of random variables Xi, i ∈ [1, N],
whose empirical density function is expressed as pX(x) ≈
1
N

∑N
i=0 δ(x − Xi) and taking into the account the property

of δ functions that states that
∫
f(x)δ(x− a)dx = f(a), then

the coefficients in (5) can be approximated as:

ŵj0,k =

∫
Φj0,k(x)

1

N

N∑
i=0

δ(x−Xi)dx =
1

N

N∑
i=0

Φj0,k(Xi)

(6)
The estimated density p̂(x) at resolution 2j0 can be ob-

tained:

p̂(x) =
∑
k

ŵj0,kΦj0,k(x) (7)

2) Convergence: Convergence rates for WDEs have been
well studied in the literature (see e.g. [28], [29] and [30]) and
they are formulated in general terms and apply for any type
of wavelet employed. Since RWFDE is a particular case of
WDE with a novel type of wavelet, its convergence rates can
be expressed similarly to the ones for WDEs.

Let the density p to belong to the Besov space Bs
p,q(Rd),

that is p ∈ Bs
p,q(Rd)(p, q ∈ [1,∞], s > d/p), then the linear

estimator defined in (7) with 2j0 ∼
(
N

lnN

) 1
2(s−d/p)+d satisfies

sup
x∈[0,1]d

|p̂(x)− p(x)| = Oa.s.

(
N

lnN

) 1
(s−d/p)/(2(s−d/p)+d)

(8)
In the empirical assessment of RWFDE carried out in [21],

the Mean Integrated Squared Error (MISE) for this type of
estimators outperforms traditional WDEs as well as other
recently published estimator variants.

3) Hyper Parameters: The estimator RWFDE has three
parameters to be selected by the user based on the different
target scenarios. The first one is the order of the B-spline
scaling functions. Similar to the bandwidth parameter in the
Gaussian function in PNN, the order of the B-spline scaling
functions controls the degree of smoothness. The second one is
the resolution parameter j0, which also affects the smoothness,
and it needs to be chosen in an appropriate way according
to the complexity of the estimated density function and the
amount of data available. The larger the j0, the more details
will be extracted but also tends to overfit. Fig. 1 depicts
the variation of smoothness when applying different j0 to
the different number of available data points by keeping the
order of the B-spline scaling functions unchanged. The third
parameter, α, is used only for non-stationary data and it
corresponds to a sliding window with size P , α = 1/P .

G. The RWFDE Formulation

The formulation of RWFDE has three steps: Initialisation,
Updating Process, and Evaluation Process [21]. Note, data
normalisation is needed, since the input data x is assumed to
lie within the interval [0, 1]n, where n denotes its correspond-
ing dimension.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 5

1

0

1
0

0.015

xy

j
0
=3, 200 samples

p
ro

b
a

b
ili

ty

1

0

1
0

0.015

xy

j
0
=3, 1000 samples

p
ro

b
a

b
ili

ty

1

0

1
0

0.015

xy

j
0
=3, 5000 samples

p
ro

b
a

b
ili

ty

1

0

1
0

0.015

xy

j
0
=4, 200 samples

p
ro

b
a

b
ili

ty

1

0

1
0

0.015

xy

j
0
=4, 1000 samples

p
ro

b
a

b
ili

ty

1

0

1
0

0.015

xy

j
0
=4, 5000 samples

p
ro

b
a

b
ili

ty

1

0

1
0

0.015

xy

j
0
=5,

200 samples

p
ro

b
a

b
ili

ty

1

0

1
0

0.015

xy

j
0
=5,

1000 samples

p
ro

b
a

b
ili

ty

1

0

1
0

0.015

xy

j
0
=5,

5000 samples

p
ro

b
a

b
ili

ty
Fig. 1: The smoothing effect of different values of j0 on a density
function estimated from different number of data points. (The basis
function used is the radial Quadratic B-spline scaling function).

1) RWFDE Initialisation: This step initialises the param-
eters for WPNN: i) The support of a radial B-spline scaling
function Φ(x) with any dilation and translation parameters
j0 and k is [2−j0(k − m

2), 2−j0(k + m
2)]. ii) The number of

frame functions required to form a frame within the support
is 2j0 + 2u+ 1, where u = 1 for Linear and Quadratic order
B-spline and u = 2 for Cubic order. Therefore, the translation
parameters k are given by k ∈ {−u, ..., 0, 1, 2, ..., 2j0+u}. The
multivariate translation vector k ∈ Zn can then be constructed
by creating all combinations of the translation parameter k
across the data dimension n, see [21] for details.

2) Updating Process: This step aims to update the coeffi-
cients ŵj0,k for the batch, and online environments. Note that
as discussed in RWFDE [21], Equation (6) can be optimised
and hence, for the coefficient ŵ, the l-th relevant frame
function using different orders of Φ(x) at the timestamp t
for the data x can be obtained for specified j0, k:

ŵtl = ŵt−1
l +

1

t

(
Φj0,k(xt)− ŵt−1

l

)
= ŵt−1

l +
1

t

(
2

nj0
2 φ
(
‖(2j0xt − kl)‖+

m

2

)
− ŵt−1

l

) (9)

ŵtl = (1− α)ŵt−1
l + α

(
Φj0,k(xt)

)
= (1− α)ŵt−1

l + α
(

2
nj0
2 φ
(
‖(2j0xt − kl)‖+

m

2

))
(10)

where φ(x) represents different orders of the B-spline function
Nm(x), (9) is the updating process in the offline and online
stationary environment, and (10) is the updating process of the
online non-stationary environment. The index t ∈ {1, 2, ..., N}
is the number of data points that have been processed so far.
The forgetting factor α relates to a window of size P to analyse
the latest P data points (α = 1/P).

Note that the number of frame functions depends on the data
dimension of x, the order of Φ and the scale j0; therefore, an
optimisation process, so-called find relevant frame functions,
was introduced by the authors in [21] and can be found in
Algorithm 1 in Section III-D. Hence, a set of relevant frame
functions will be used to update the coefficients, such that

their resulting evaluations of 2
nj0
2 φ
(
‖(2j0xt − kl)‖+ m

2

)
are

different from zero.
3) Evaluating Process: Once the coefficients ŵ are found,

the estimated density p̂(x) can be derived using (7). Details
can be found in [21].

III. THE PROPOSED WAVELET PROBABILISTIC NEURAL
NETWORK

There is a great body of research dedicated to the study of
PNNs. However, to the best of our knowledge, none of the
existing approaches has considered a PNN with a wavelet-
based density estimator. In this section, the novel formulation
of RWFDE-based PNN will be discussed.

A. Wavelet Probabilistic Neural Networks (WPNN)

Similar to the PNN, the proposed WPNN is also a four-
layered network, with input, pattern, summation and output
layers; however, they differ on the units within the pattern
layer. While the former relies on Gaussian functions, the latter
considers multidimensional radial wavelet frames based on
radial B-spline scaling functions from [21]. Note here that the
replacement of these activation functions implies a substantial
change in the density estimation paradigm employed by the
network. The structure of the proposed WPNN is depicted
in Fig. 2, where the translation vector k is a multivariate
vector which contains all the combinations of the translation
parameter k across the data dimension n. The sub-indices of
k in the figure refer to the translation parameter k at the M -th
row, n-th column in k, where M depends on the length of k,
and n depends on the data dimension of x.

The formulation for the proposed WPNN can be divided
into three main steps: network construction, network training
and network testing.

+

-kC,1,1

+

-kC,1,n || dist ||

+

-kC,Mc,1

+

-kC,Mc,n || dist ||

+
2

j0

-k1,1,1

+

-k1,1,n

Pattern layer

|| dist ||

+

-k1,M1,1

+

-k1,M1,n || dist ||

w1,1

x1

xT

w1,M1

Class 1

Class C

Output layerInput layer Summation layer

wC,MC

wC,1

2
j0

2
j0

2
j0

2
j0

2
j0

2
j0

2
j0

ϕ

ϕ

ϕ

ϕ

∑

∑

Fig. 2: Proposed WPNN.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 6

B. Online and adaptive learning in WPNN

The key advantage of the proposed WPNN is that, since
it is based on WDEs, it allows the recursive computation of
network weights. The coefficients can therefore be dynami-
cally updated when new data points arrive (Section III-D). Two
different online learning algorithms are proposed: i) For the
stationary environment, whenever new data arrives, the coeffi-
cients will be discounted according to the current timestamp;
ii) For the non-stationary environment, as the underlying
characteristics of the data vary over time, a forgetting factor
α is defined to discount the historical network coefficients.

C. WPNN construction

The initial step is the construction of the network (as in the
RWFDE Initialisation), where the translation parameter k for
the m-th order of B-spline and the dilation parameter j0 are
defined (see also Section II-G).

D. WPNN training

In the training step, the empirical coefficients w (network
weights) are estimated for each basis function of all classes,
using only available training data. Using (6), (9), and (10),
the coefficients w for the l-th basis function associated with
the class cq at timestamp t (for the offline setting and online
environments, respectively) for specified j0, k are given by:

ŵtq,l = ŵt−1
q,l +

1

t

(
2

nj0
2 φ
(
‖(2j0xt−kl)‖+

m

2

)
−ŵt−1

q,l

)
(11)

ŵtq,l = (1−α)ŵt−1
q,l +α

(
2

nj0
2 φ
(
‖(2j0xt−kl)‖+

m

2

))
(12)

Note that relevant frame functions are selected for the
training process in this step by using Algorithm 1, hence
l = 1, 2, ...,Mq . Algorithm 2, Algorithm 3 and Algorithm
4 present the pseudocode for the above training procedure
in offline, online stationary and online non-stationary envi-
ronments, respectively. Note that unlike the standard neural
networks or WNNs, the proposed WPNN does not require
back-propagation, which is also one of the advantages of using
PNN.

1) WPNN offline training: This algorithm (Algorithm 2)
runs only once, and the outputs are the coefficients for every
class. In the pseudocode, the set of indices of the relevant
frame functions is denoted as b. The expression |b| is the
cardinality of b, the symbol \ as in f \b removes the elements
in b from f .

2) WPNN online training: The two online training pro-
cesses update the coefficients in the stationary and non-
stationary environments, and are presented in Algorithm 3 and
Algorithm 4, respectively.

It is worth mentioning that Algorithm 2 and Algorithm 3
use the same updating policy (11). However, in the case of
Algorithm 2 all the training data x will be provided, and hence
this algorithm will only run once. In contrast, Algorithm 3 will
be called whenever a new data point is available: the algorithm
is only aware of the last data point and the last calculated

Algorithm 1: RWFDE find relevant frame for given datapoint
(xt,j0,m,k,M)

Input: xt: The latest training data x at the timestamp t; j0: Index associated
to the base resolution; m: The order of the B-spline function
employed as scaling function; k: Translation vectors for the frame
functions in [0,1]; M : Number of frame functions in [0,1].

Output: b = {b1, b2, ..., bB}: Set of indices of the translation vectors for
the frame functions relevant for xt.

n = dim(xt);
h = [h1, h2, ..., hn] = [0, 0, ..., 0];
x = xt;
for j ← 1 to M do

for d← 1 to n do
if xd ≥ 2−j0 (kj − m

2) and xd ≤ 2−j0 (kj + m
2) then

hd ← hd + 1;
if d == 1 then

Ad,hd
← j;

else
Ad,hd

← (j − 1)Md−1;

b = A1,∗;
for d← 1 to n− 1 do

g ← {};
for i← 1 to length(b) do

for p← 1 to columns(A) do
g ← concatenate(g, (bi + Ad+1,p));

b← g;

Algorithm 2: WPNN offline training (X, C, j0,m,M,k)
Input: X = {x1,x2, . . . ,xcq}: Collection of data vectors for all the

classes; C: Number of classes; j0: Index associated to the base
resolution; m: Order of the B-spline function employed as scaling
function; M : Number of frame functions in [0,1]; k: Translation
vectors for the frame functions in [0,1].

Output: Ŵ = {ŵ1, . . . , ŵC}: Set of empirical coefficients for the basis
functions of all the classes.

for q ← 1 to C do
Nq = length(xq);
for t← 1 to Nq do

b = RWFDE find relevant frame for given datapoint(xq,t,j0, k,
M);
Mq = |b|;
for l← 1 to Mq do

ŵq,bl
=

ŵq,bl
+ 1

t

(
2

nj0
2 φ

(
‖(2j0xq,t−kbl

)‖+ m
2

)
− ŵq,bl

)
;

f = [1, 2, ...,M];
f\b = [1, 2, ...,M]\[b1, b2, ..., bB];
for l← 1 to M − |b| do

ŵq,fl
= ŵq,fl

−
ŵq,fl

t

ŵq = [ŵq,1, ŵq,2, . . . , ŵq,M];

coefficient w for a specific class. Regarding Algorithm 4, it
utilises the updating policy (12). Similar to Algorithm 3, it
aims to update the coefficients instantly when a new data point
is available.

E. WPNN testing

The evaluation of a trained WPNN consists of using the
test data to estimate the corresponding probability for each
class. The most probable generative model for each testing
data point is chosen as its corresponding class. According to
this, we first need to obtain the class-conditional probability
density function for the class cq , which is defined by

p̂q(xi|cq) =

Mq∑
l=1

2
nj0
2 ŵq,lφ(

∥∥2j0xi − kq,l
∥∥+

m

2
) (13)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 7

Algorithm 3: WPNN online stationary training
(xt, ŵq , j0,m,M,k, t)

Input: xt: The latest training data x at the timestamp t; wq The set of latest
coefficients for class cq ; j0: Index associated to the base resolution;
m: The order of the B-spline function employed as scaling function;
M : Number of frame functions in [0,1]; k: Translation vectors for the
frame functions in [0,1]; t: Current timestamp/the t-th data in the
dataset.

Output: ŵq : Set of network coefficients for the class cq .
b = RWFDE find relevant frame for given datapoint(xt,j0, k,M);
Mq = |b|;
for l← 1 to Mq do

ŵq,bl
= ŵq,bl

+ 1
t

(
2

nj0
2 φ

(
‖(2j0xt − kbl

)‖+ m
2

)
− ŵq,bl

)
;

f = [1, 2, ...,M];
f\b = [1, 2, ...,M]\[b1, b2, ..., bB];
for l← 1 to M − |b| do

ŵq,fl
= ŵq,fl

− ŵq,fl
/t

Algorithm 4: WPNN online non stationary training
(Xt, ŵq , j0,m,M,k, α)

Input: xt: The latest training data x at the timestamp t; ŵq : The set of latest
coefficients for class cq ; j0: Index associated to the base resolution;
m: The order of the B-spline function employed as scaling function;
M : The number of frame functions in [0,1]; k: Translation vectors for
the frame functions in [0,1]; α: The forgetting factor, it is the inverse
of the size of a sliding window.

Output: ŵq : Set of network coefficients for the class cq .
b = RWFDE find relevant frame for given datapoint(xt,j0, k,M);
Mq = |b|;
for l← 1 to Mq do

ŵq,bl
= (1− α)ŵq,bl

+ α
(

2
nj0
2 φ

(
‖(2j0xt − kbl

)‖+ m
2

))
;

f = [1, 2, ...,M];
f\b = [1, 2, ...,M]\[b1, b2, ..., bB];
for l← 1 to M − |b| do

ŵq,fl
= ŵq,fl

− αŵq,fl

Then the output unit computes the decision rule defined in
(14) to obtain the class cq associated with the training vector
xi.

d(xi) = arg max
q
{P (cq)p̂q(xi|cq)}, q = 1, . . . , C (14)

where P (cq) is the a prior class probability, which is assumed
to be uniform for all classes. Algorithm 5 presents the WPNN
testing step for a specific class cq . For a specific data point xi,
the predicted class can be obtained using (14) and selecting
the maximum probabilities over different classes.

Algorithm 5: WPNN testing (X,K,w, j0,m,k,M)
Input: X = {x1,x2, . . . ,xNtesting}: Set of Ntesting testing data; ŵ: Set of

network coefficients for the basis functions; j0: Index associated to the
base resolution; m: The order of the B-spline function employed as
scaling function; k: Translation vectors for the frame functions in
[0,1]; M : number of frame functions in [0,1].

Output: p̂ = p̂(x1), ..., p̂(xNtesting): Set of probabilities for the testing data
x.

for i← 1 to Ntesting do
b = RWFDE find relevant frame for given datapoint(xi,j0, k,M);
Mq = |b|;
for l← 1 to Mq do

zl = 2
nj0
2 wbl

φ(
∥∥2j0xi − kbl

∥∥+ m
2);

p̂q(xi|cq) =
∑Mq

l=1 zbl ;

F. WPNN parameters selection
Three are the tuning parameters for the proposed WPNN.

The first one is the order of the B-spline scaling functions

selected for the pattern units. The second parameter is j0, the
dilation or scale parameter of the B-spline scaling functions.
By changing these two parameters, we can control the degree
of smoothness of the densities for each class and then modify
the discrimination capabilities of the network. Note here that
the selection of j0 will depend on the size of the available
training data as well as on the complexity of the classification
problem. And the third parameter, for the online non-stationary
environment, is the forgetting factor α that is used to discount
the historical network coefficients. The larger the α, the more
emphasis will be put on recent data. The size of α will need
to be modified based on the characteristic of the datasets, such
as the frequency of concept drift.

The effect of increasing the number of training data and the
effect of modifying the base resolution j0 on the classification
results are both shown in Fig. 3.

G. Coefficient adjustment: WPNN performance improvement

In this section, we propose a Coefficient Adjustment Opera-
tor (CAO), which is applied to a selected subset of the empiri-
cal coefficients of a trained WPNN, to improve generalisation
and minimise overfitting in the offline setting. In order to apply
this operator, the experimental data has to include training,
validation and test sets. The improvement in performance is
evaluated using the validation set. In this way, we verify that
any increase in accuracy over the training set actually yields
an increase in accuracy over the validation set.

Note that this operator is not directly aimed at improving the
estimation of class-conditional densities. Instead, its objective
is to modify the decision boundary. According to Donoho et al.
[31] the procedure, so-called wavelet thresholding, is similar
to the adjustment operator proposed, which can improve
convergence because they suppress noise artefacts and peaks.
See [31] for more comprehensive and theoretical analysis.

The CAO is defined by

δλ(wq,l) =

{
wq,l + λ, if wq,l ∈ F ;

0, otherwise;
(15)

where wq,l is a given empirical coefficient and the set F
includes the coefficients of all those basis functions whose
support includes at least one misclassified data point of the
validation set. Note that when (15) is applied to any of
the coefficients of the subset F its corresponding value is
increased by an amount equal to λ.

To evaluate the effect of using CAO with the proposed
WPNN, we perform an experiment with a synthetic spiral
dataset similar to Fig. 3. In this assessment, we evaluate dif-
ferent configurations of the proposed neural network varying
the B-spline function employed, its resolution and the value
of the CAO applied. We also vary the number of data points
considered for the dataset. The 25 percent of the dataset is
used for each of training and validation, while the remaining
50 per cent is used for testing. Each configuration is evaluated
by a hundred times randomly selecting training, validation and
testing sets and the average accuracy for these 100 experiments
is reported. The results obtained for all experiments are
presented in Table II.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 8

Fig. 3: The effect of increasing the number of data and modifying the base resolution j0 on the classification results of the proposed WPNN.
This example experiment uses radial Quadratic B-spline scaling functions.

There are three key observations from Table II. The first
one is that for resolutions higher than 3, algorithms with
CAO report the highest accuracy in around 80 per cent of the
cases, that is in 29 out of the 36 scenarios, where considering
the three B-spline functions evaluated and the four dataset
settings. This means that the CAO improves the WPNN
performance when the algorithm is working with the finest
resolutions. Note that higher B-spline resolutions are better
for applications involving more complex decision boundaries.
The second observation is that the use of CAO becomes
more relevant in classification scenarios when there is not
enough data to characterise the different classes. Note that
for WPNN configurations with resolutions equal to 3 and 4
CAO only improves performance in 1 out of 6 experiments
with the largest dataset, the one with 5000 data points. The
third observation (related to the first one) is that the use of
CAO is not recommended for WPNNs with B-spline functions
with coarser resolutions as even a small modification of its
coefficients bring large changes in the decision boundary. This
can be observed in the 12 scenarios for j0 = 3, where only in
17 per cent of them, CAO improved accuracy.

The effect of applying the coefficient adjustment operator
on the spiral dataset is shown in Fig. 4. The testing accuracy
in this figure is increased from 97.0 to 97.2 after application
of the coefficient adjustment.

H. Time Complexity of the online version of WPNN

Table III shows the time complexity of WPNN when pro-
cessing one data point in an online environment. The analysis
has been separated into four steps: network parameter initial-
isation, find relevant frame functions for the data, evaluation,
and network parameter update. Note that R is the length of
translation parameters, n is the data dimension, Mq is the
cardinality of the relevant frame function, nc is the number of
classes in the classification task, m is the order of B-spline.

1
0

1
TRAINING, Accuracy=99.6

1
0

1
VALIDATION, Accuracy=95.2

1
0

1
TESTING, Accuracy=97

1
0

1
TESTING (adjusted coeffs), Accuracy=97.2

Unassigned Class A Class B

Fig. 4: The effect of applying a coefficient adjustment operator λ on
the coefficients of trained WPNN estimated from 1000 data points for
each class using Quadratic B-spline scaling functions with j0 = 5.

The complexity is independent of the cardinality of the dataset,
but depends on the parameters settings and the latest available
data point. Therefore, the proposed WPNN has the ability to
provide low and constant computation time for data stream
classification.

IV. PERFORMANCE ASSESSMENT

In this section, the performance of the proposed WPNN
is assessed using synthetic and real-world datasets in both
offline and online settings 1. The empirical evaluation includes
three types of experiments: i) Offline classification of pub-
licly available datasets; ii) Online classification of stationary
datasets; and iii) Online classification of non-stationary data

1The source code is released at https://github.com/puyangdl/WPNN.

https://github.com/puyangdl/WPNN

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 9

TABLE II: Experimental Evaluation for the Coefficient Adjustment Operator on Spiral Dataset

Linear B-spline Quadratic B-spline Cubic B-spline
Resolution CAO n=100 n=500 n=1000 n=5000 n=100 n=500 n=1000 n=5000 n=100 n=500 n=1000 n=5000

j0 = 3

No CAO 68.12 68.14 67.08 64.44 65.64 65.03 64.24 62.36 65.14 65.35 64.25 62.95
λ=0.0005 68.04 68.62 67.21 63.80 64.62 58.13 54.17 53.07 61.38 53.33 51.15 51.24
λ=0.0010 68.06 68.35 66.87 63.43 64.22 56.97 53.14 52.28 60.66 52.31 50.31 50.28
λ=0.0050 68.02 66.93 65.47 61.80 63.60 54.78 51.21 50.59 59.44 51.71 50.00 50.00
λ=0.0100 67.78 65.87 64.34 60.57 63.18 53.95 50.72 50.09 59.08 51.68 50.00 50.00
λ=0.0500 67.46 62.15 60.14 56.08 62.04 52.88 50.53 50.00 58.82 51.66 50.00 50.00

j0 = 4

No CAO 76.48 93.22 92.78 83.99 78.72 78.65 74.60 70.76 72.18 74.77 74.41 72.12
λ=0.0005 77.26 93.35 92.92 84.52 78.82 78.85 74.39 68.41 72.30 73.38 69.65 63.92
λ=0.0010 77.26 93.36 92.92 84.48 78.78 78.79 74.21 67.45 72.24 72.92 68.43 62.07
λ=0.0050 77.26 93.33 92.85 84.17 78.40 78.48 73.42 63.67 72.08 71.20 64.49 57.35
λ=0.0100 77.26 93.34 92.76 83.77 78.30 78.29 72.85 61.28 72.02 70.23 62.68 55.44
λ=0.0500 77.18 93.01 92.07 80.81 78.40 77.44 70.52 55.20 71.54 67.62 58.56 51.79

j0 = 5

No CAO 65.40 88.51 94.91 97.35 76.12 94.01 96.42 96.04 79.32 94.63 95.66 88.14
λ=0.0005 66.46 89.79 95.33 97.37 76.66 94.17 96.45 96.04 79.56 94.70 95.65 88.20
λ=0.0010 66.46 89.79 95.33 97.37 76.64 94.19 96.44 96.03 79.64 94.72 95.63 88.06
λ=0.0050 66.46 89.84 95.37 97.36 76.64 94.23 96.44 96.02 79.68 94.74 95.55 87.49
λ=0.0100 66.46 89.82 95.36 97.35 76.62 94.20 96.46 96.00 79.60 94.67 95.50 87.10
λ=0.0500 66.44 89.88 95.36 97.28 76.80 94.12 96.33 95.94 79.46 94.32 95.26 85.90

j0 = 6

No CAO 55.66 70.18 80.42 97.38 61.68 85.42 93.81 98.27 68.40 92.27 96.28 98.26
λ=0.0005 56.14 72.28 82.75 97.65 62.74 86.87 94.48 98.28 69.50 92.82 96.40 98.27
λ=0.0010 56.14 72.28 82.75 97.65 62.74 86.87 94.50 98.28 69.50 92.84 96.39 98.26
λ=0.0050 56.14 72.28 82.75 97.66 62.74 86.88 94.48 98.27 69.50 92.80 96.39 98.24
λ=0.0100 56.14 72.28 82.75 97.66 62.76 86.87 94.48 98.28 69.46 92.83 96.38 98.25
λ=0.0500 56.14 72.27 82.73 97.63 62.76 86.86 94.43 98.25 69.44 92.80 96.32 98.26

Frequency Step Time Complexity
Run only once Parameter Initialisation O(Rn)

Run whenever new data arrives
Find relevant frame function O(n(R+Mq))

Evaluation O(nc +Mqnm)
Parameter update O(Mqnm)

TABLE III: Time complexity of WPNN

datasets. All the experiments were run using MATLAB 2014a2

on Windows 10 OS with Intel i9-9900K CPU and 32G RAM.
As the WPNN is a reformulation of a PNN, we first

compare their performance. In accordance to [32]: the band-
width/smoothing parameter σ is proportional to the standard
deviation of the dataset and the average distance between data
points. The resulting smoothing parameter σ̂ is estimated using
algorithm Gap-Based Estimation in [32]. The chosen datasets
have standard deviations between 0.01 to 0.2, and the resulting
σ̂ between 0.002 to 0.07. Therefore, for PNN, we consider five
different values for the smoothing parameter of the Gaussian
kernel that can cover this range: 0.001, 0.01, 0.05, 0.1 and 0.2.
Regarding WPNN, we test them with B-splines of the three
orders depicted in Table I and with five different values of j0:
1, 2, 3, 4 and 5. The highest j0 is chosen to be 5 as in [21]
showed that overfitting happened when j0 ≥ 6.

A. Offline classification

This experiment evaluates the performance of the proposed
WPNN (Algorithm 2) using five benchmark classification
datasets from different sources [33], [34]. The assessment is
based on a stratified shuffle and split cross-validation, which
divides the datasets into training, validation, and test sets. For
the construction of each set, we randomly select 25%, 25%,
and 50% of the examples for training, validation, and test sets,
respectively. The network configurations that provide the best
performance in the validation set are subsequently used by the
test set. We repeat the experiment 100 times and the average
accuracies are used. Note that only numerical features will

2Note that for benchmarking with alternative algorithms, Python 3.6 was
used due to the alternative algorithms being implemented in Python.

be used as they can be normalised within the interval [0, 1]n

(see Section II-G). Note also that Test2 in Table IV refers
to the parameter adjustment operation mentioned in Section
III-G by assigning λ = [0.01, 0.001, 0.0001] to the coefficients
within the support. The average results for the best network
configurations are shown in Table IV.

Other ML algorithms such as SVM with linear, radial basis
function and polynomial kernels, Random Forest (RF), Feed-
Forward Neural Networks (FFNN) and Gradient Boosting
(GB) are also used to evaluate the performance of WPNN
in the offline setting3. The average accuracies of 100 trials
from the best algorithm are given in Table V.

From these results, we can see that the proposed WPNN
outperforms or matches the performance of PNN and other ML
algorithms within 1% difference. Furthermore, in four out of
the five datasets evaluated, the proposed WPNN shows better
results than other ML algorithms.

B. Online classification in a stationary environment

This experiment evaluates the online learning and classi-
fication capabilities of the proposed WPNN (Algorithm 3).
The assessment is based on a synthetic spiral dataset similar
to Fig. 4, consisting of 20 thousand data points. The results
reported for the online environments are the average results of
100 repeated trials.

The classification performance is compared using the slid-
ing window-based Prequential error approach [37] which
monitors the evolution of learning as it progresses. For this
type of error, each individual data point is used to test the
model before it is used for training, and hence the accuracy
is constantly updated at each timestamp. We use a sliding
window that selects the latest P errors obtained from the
learning process and calculates the prequential error [37]. For
the PNN, four different settings are used for online learning.
A sliding window with size N = [100, 500, 1000, Navailable]

3Note that scikit-learn [35] and Pytorch [36] are used to implement such
algorithms.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 10

TABLE IV: Accuracy for the Offline Classification Experiment

PNN WPNN
Linear B-spline Quadratic B-spline Cubic B-spline

n Dataset l n Train Valid Test Train Valid Test Test2 Train Valid Test Test2 Train Valid Test Test2
1 Iris 150 4 99.74 95.28 95.27 96.33 95.81 95.51 95.53 97.26 95.83 95.36 95.20 98.23 95.69 95.27 95.27
2 Fourclass 862 2 100.0 99.68 99.64 99.84 99.13 99.18 99.23 99.94 99.55 99.48 99.48 99.96 99.53 99.51 99.51
3 Banana 5300 2 91.12 89.98 90.13 91.09 90.04 89.45 89.68 92.19 90.53 89.55 89.66 91.43 89.92 89.89 89.98
4 Newthyroid 215 5 99.87 93.70 93.61 96.42 92.83 93.07 93.50 96.36 93.30 93.50 93.64 97.49 94.26 93.98 93.95
5 Titanic 2201 3 79.41 78.61 78.44 77.78 77.14 77.18 77.18 78.14 77.73 77.56 77.56 78.15 77.94 77.78 77.78

TABLE V: Offline Classification Accuracy - WPNN vs Other Machine Learning algorithms

WPNN
n Dataset Order Train Valid Test Method Train Valid Test
1 IRIS Linear 96.33 95.50 95.53 SVM-linear 94.59 89.47 94.67
2 Fourclass Cubic 99.96 99.53 99.51 RF 100.00 97.22 96.75
3 Banana Cubic 91.43 89.92 89.98 RF 100.00 87.77 88.91
4 Newthyroid Cubic 97.49 94.26 93.98 FFNN 96.23 98.15 92.59
5 Titanic Cubic 78.15 77.94 77.78 GB 78.91 80.73 78.29

is used to select the most recent N data points for training,
where Navailable is the number of available training data so
far. In the following sections default PNN stands for PNN
(N = Navailable). For the online learning process, the PNN
requires N data points inside the sliding window, while the
WPNN only requires the last available data point.

The evaluation metrics are accuracy and computation time.
Two accuracies are reported: first, the instantaneous accuracy,
which is defined as the classification accuracy in the current
sliding window, and second, the accumulated accuracy, which
is the average accuracy of all the evaluated sliding windows so
far. The computation time is defined as the time taken to train
the network with the readily available data points plus the time
taken to predict the class of one future data point. Note that
the above metrics consider a sliding window moving forward
one data point at each timestamp.

Fig. 5: Instantaneous accuracy for the online experiment in a station-
ary context.

Fig. 5 shows how, for the latest available data, the in-
stantaneous accuracy increases steadily at the beginning of
the training process for the WPNN and default PNN (N =
Navailable). The accuracy only drops when the number of
training data N = 1×104, which is the first time that a second
class appears. However, the computation time for the WPNN
algorithm remains constant. In contrast, the computation time
of the default PNN grows exponentially as more training data
becomes available. In respect to the confusion matrices (Fig.

6), both the WPNN and the default PNN present similar
performance, with only one misclassified data point. Regarding
the best window setting of PNN (N = 500) the results show, as
expected, a low computation time (due to the constant number
of training data used) but at the expense of a much lower
instantaneous accuracy.

Regarding the configuration of the WPNN and the PNN, the
best parameter for the WPNN, in this case, is Linear order B-
splines with j0 = 1. For the default PNN, a larger bandwidth
parameter is used, σ = 0.05, providing higher a degree of
smoothness than smaller σ values, whereas for the PNN (N =
500), σ = 0.001 is used.

10
0

10
1

10
2

10
3

10
4

Data used for training

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Accumulated accuracy

WPNN

PNN = 0.05

PNN = 0.001, N = 500

0 1

Predicted Class

0

1T
ru

e
 C

la
s
s

WPNN Linear j0=1

1

10000

9999

0 1

Predicted Class

0

1T
ru

e
 C

la
s
s

Confusion Matrices

PNN =

0.05

1

10000

9999

0 1

Predicted Class

0

1T
ru

e
 C

la
s
s

PNN = 0.001, N = 500

1327

10000

8673

Fig. 6: Online stationary classification: Accumulated accuracy and
the confusion matrix for the best testing configurations of WPNN
and PNN.

C. Online classification in a non-stationary environment

In this section, a synthetic dataset consisting of 20 thou-
sand data points with two different Gaussian distribution
parameters is used to test Algorithm 4. Fig. 7 depicts the
distribution of this dataset. A set of forgetting factors α =
[1
100

1
300

1
500

1
700

1
1000] are used to discount the network param-

eters as in [21]. Here we also use the Pre-quential error to
test the performance.

Results from this experiment are shown in Fig. 8 and 9.
Similar observations as in the stationary environment arise:
first, both the default PNN and the WPNN have similar

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 11

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Class 1

Class 2

Fig. 7: Example of the non-stationary dataset.

classification performance with only one misclassified data
point when the first data of the second class appears. Regarding
the best result out of the three settings for the PNN, as fewer
data points are involved in the training, the computation time
of the chosen PNN (N = 500) is lower when compared to the
default PNN. However, the instantaneous accuracy (Fig. 8) is
also lower than the WPNN and the default PNN.

For these tests, the best configurations are: WPNN with
Linear order B-spline with j0 = 1, α = 1

100 , default PNN
with σ = 0.01, and PNN (N = 500) with σ = 0.001.

Fig. 8: Results for the online experiment in a non-stationary context.

D. Online classification using real-world datasets

In this section, the non-stationary version of the algorithm
(Algorithm 4) is assessed. For this purpose, the dataset HTTP
derived from KDD Cup 99 [38] is selected, to detect intrusion
attacks that vary over time (and their concepts might also
drift), as it contains only 0.4% of anomalies. This dataset
contains three features from the original KDD Cup 99: ’du-
ration’,’src byte’ and ’dst byte’. The preprocessing is done
according to [39].

The accumulated accuracy and the computation time of
both the WPNN and the PNN are shown in Fig. 10. The
evaluation metrics (obtained from the confusion matrices for
each method) are Classification Rate, Precision, Recall and

10
0

10
1

10
2

10
3

10
4

Data used for training

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Accumulated accuracy

WPNN

PNN = 0.01

PNN = 0.001, N = 500

0 1

Predicted Class

0

1T
ru

e
 C

la
s
s

WPNN Linear j0=1

1

10000

9999

0 1

Predicted Class

0

1T
ru

e
 C

la
s
s

Confusion Matrices

PNN =

0.01

1

10000

9999

0 1

Predicted Class

0

1T
ru

e
 C

la
s
s

PNN = 0.001, N = 500

1751

10000

8249

Fig. 9: Online non-stationary classification: Accumulated accuracy
and the confusion matrix for the best testing configurations of WPNN
and PNN.

F1-score (shown in Table VI). The proposed WPNN has
higher Classification Rate, Precision and F1-score and has
less than 0.4% difference in the Recall value compared to
the default PNN. Regarding the best window setting of the
PNN (N = 1000): although it predicts the results faster than
the default PNN, due to fewer data points involved in the
training, its overall performance is lower.

The best configuration of the WPNN used for the HTTP
dataset is Cubic order B-spline with j0 = 2, α = 1

9 ; σ = 0.001
for the default PNN, and σ = 0.01 for PNN (N = 1000). The
magnitude of the forgetting factor α was chosen taking into
account the characteristic of the data stream. If the data in the
stream shows abrupt changes, a larger value of α should be
used to increase the sensitivity of the estimator (which could
be interpreted as using a smaller window size to emphasise the
more recent data). Note that it is not feasible to repeat default
PNN 100 times for the HTTP dataset due to the significantly
increased time complexity when 500,000 data points are used.
Here, the default PNN was repeated four times as it takes too
long to finish each trial, and the average results are reported
in this section.

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Accumulated accuracy

WPNN Cubic j0=2, = 1/9

PNN = 0.001

PNN = 0.01, N = 1000

10
0

10
1

10
2

10
3

10
4

10
5

Data used for training

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

T
im

e
 (

s
)

Computation Time

WPNN Cubic j0=2, = 1/9

WPNN training time

PNN = 0.001

PNN = 0.01, N = 1000

Fig. 10: HTTP - Accumulated accuracy and the computation time for
the best configurations of WPNN and PNN.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 12

WPNN PNN (N = Navailable) PNN (N = 100)
Classification Rate 0.9998 0.9994 0.9978

Precision 0.9634 0.8810 0.9567
Recall 0.9869 0.9910 0.4595

F1-score 0.9750 0.9327 0.6208

TABLE VI: HTTP - Resulting Classification Rate, Precision, Recall,
and F1-score for the Class attack.

On a follow-up assessment, we use an advanced KDD
dataset named NSL-KDD [40] with fewer redundant data
points than the original KDD Cup 99. A similar preprocessing
as with the previous dataset is performed and a subset of NSL-
KDD is used for the evaluation. The obtained dataset consists
of three attributes with 4.3% of attacks. The accumulated
accuracy, computation time and the evaluation metrics for both
the WPNN and the PNN are shown in Fig. 11 and Table VII.
Table VII shows that the WPNN outperformed both PNNs in
terms of Classification Rate, Recall and F1-score.

For this assessment, the best configuration of the WPNN and
the PNN, for dataset NSL-KDD are: Cubic order B-spline with
j0 = 3, α = 1

15 ; σ = 0.001 for default PNN, and σ = 0.001
for PNN (N = 100).

The main observations found in these two experiments are:
i) WPNN can predict the class effectively when only a few
data points are provided to the model (e.g. at the beginning
of the training). ii) the accuracy performance of the WPNN
and the PNN tends to be similar when a sufficient amount
of data points are provided. iii) the computation time for the
WPNN is lower and more stable than the default PNN when
the number of data points used for training is greater than
102. This is due to the fact that for the PNN, more neurons
are required when more data becomes available. In contrast,
the WPNN utilises the radial B-spline function that does not
depend on the size of the dataset. Therefore, the time and
space complexity of the WPNN remains constant. iv) A sliding
window that chooses N most recent data for training can
reduce and maintain the computation time, but it also reduces
the prediction performance.

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Accumulated accuracy

WPNN Cubic j0=3, = 1/15

PNN = 0.001

PNN = 0.001, N = 100

10
0

10
1

10
2

10
3

10
4

Data used for training

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
im

e
 (

s
)

Computation Time

WPNN Cubic j0=3, = 1/15

WPNN training time

PNN = 0.001

PNN = 0.001, N = 100

Fig. 11: NSL-KDD - Accumulated accuracy and the computation time
for the best configurations of WPNN and PNN.

WPNN PNN (N = Navailable) PNN (N = 100)
Classification Rate 0.9986 0.9979 0.9958

Precision 0.9756 0.9705 0.9963
Recall 0.9906 0.9796 0.9014

F1-score 0.9831 0.9751 0.9465

TABLE VII: NSL-KDD: Resulting Classification Rate, Precision,
Recall, and F1-score for the Class attack.

E. Benchmarking with alternative algorithms

Several methods have been proposed for data stream clas-
sification and anomaly detection in offline settings and online
environments. The most common approach is the density-
based algorithms, where anomalies are associated with a
lower density area compared to normal data points that are
grouped together to have high densities. Local Outlier Factor
(LOF) [41] is one of its representatives. In this context,
a low computational time LOF approach, suited for online
environments, has been proposed in [42]. Regarding online
data stream anomaly detection, the training and evaluation
processes should match the arrival rate of the data points.
Recently, the offline density-based method STARE [43] has
been reported to have fast inference speed. Other Machine
Learning (ML) methods for anomaly detection based on One-
class SVM, Random Forest and Principal Component Analysis
can be found in [44]–[47].

In this section, traditional and state-of-the-art algorithms for
anomaly detection and data stream classification are included
in the assessment (see Table VIII). The selected dataset is
HTTP. An additional dataset HTTP2 is also created by adding
Gaussian noise with different mean and covariance (affecting
10000 data points each), in ten different time periods of the
original HTTP dataset.

The results of the WPNN and benchmark algorithms are
given in Table IX. For the offline algorithms, the evaluation
metrics are the time to train and test the data, Area Under
Curve (AUC), and F1-score for the class attack [45]. For the
online algorithms, the evaluation time to classify the classes,
AUC and F1-score are reported [46]4.

Reference Algorithm Online/Offline
LOF [41] Local Outlier Factor Offline

One-Class SVM [44] SVM Offline
PidForest [45] Random Forest Offline
STARE [43] Kernel Density Estimator Offline

online LOF [42] Incremental Local Outlier Factor Online

osPCA [47] Over-sampling Principal
Conponent Analysis Online

iMondrian [46] Isolation Mondrian forest Online

TABLE VIII: Comparison of the proposed algorithm with bench-
marks

From Table IX it can be seen that, for the online non-
stationary scenario, the main advantage of the WPNN is its
superior classification performance with fast computation time.

The best configuration of the WPNN used for HTTP in
Table IX is Linear order B-spline with j0 = 2, α = 1/20;
where for dataset HTTP2, Linear order B-spline, with j0 =
4, α = 1/10 are used. The order of the B-spline and value
of j0 should be chosen according to the complexity of the

4Note: osPCA did not finish within the same of order of magnitude to the
ones reported and hence it is not included in the table.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 13

HTTP HTTP2
Total

Time (s) AUC F1 Total
Time (s) AUC F1

LOF 12.954 0.353 0.010 18.506 0.346 0.010
One-Class SVM 1794.159 0.995 0.618 1545.193 0.824 0.042

PIDforest 158.762 0.989 0.416 156.009 0.931 0.104
WPNN 246.524 0.991 0.967 356.744 0.996 0.802

Evaluation
Time (s) AUC F1 Evaluation

Time (s) AUC F1

online LOF 157.210 0.637 0.016 92.515 0.351 0.018
iMondrian 2758.200 0.979 0.008 2240.589 0.629 0.012

WPNN 164.470 0.991 0.967 220.379 0.996 0.802

TABLE IX: Results of the benchmark algorithms on the real-world
datasets HTTP and HTTP2. The best case in terms of Computation
time, AUC and F1-Score have been highlighted.

probability density being estimated. Note that there is a trade-
off between computation time and accuracy. For example, if
a higher-order B-spline and j0 are used for HTTP, (i.e. Cubic
order, j0 = 2), the AUC and F1-score increase to 0.994, 0.975,
respectively. However, the total time will increase from 246.5
s to 688.2 s.

The performance of the WPNN is also compared with
STARE by using two additional datasets from YahooLab [48],
which contains 67 real and 100 synthetic files, respectively.
The evaluation metrics for this experiment are: Classification
Rate, Precision, Recall and F1-score for the class attack. In
this assessment, both WPNN stationary and non-stationary
algorithms (i.e. Algorithms 3 and 4) are used for the YahooLab
dataset since it contains stationary and non-stationary streams.

YahooA1 YahooA2 HTTP HTTP 2
WPNN STARE WPNN STARE WPNN STARE WPNN STARE

CR 0.9577 0.9514 0.9969 0.9865 0.9998 0.9997 0.9981 0.9846
Precision 0.6507 0.2022 0.6081 0.1192 0.9634 0.9483 0.6735 0.1486

Recall 0.5869 0.5974 0.4717 0.4893 0.9869 0.9873 0.9910 0.6246
F1-score 0.5442 0.3021 0.5204 0.1918 0.9750 0.9674 0.8020 0.2401

TABLE X: Comparative results on the datasets YahooLab (time
series), HTTP and HTTP2. The best case in terms of Classification
Rate (CR), Precision, Recall, and F1-score have been highlighted.

Table X compares the WPNN and the STARE algorithm5.
From this table, the WPNN outperforms STARE in terms
of Classification Rate, Precision and F1-score in datasets
YahooA1, YahooA2 and HTTP, but with a slight drop in the
Recall. However, the higher value of precision and F1-score
show that the WPNN is more reliable when predicting the
anomaly class. In the case of the HTTP2 dataset, WPNN
outperforms all the benchmark algorithms (see Table IX & X)
in terms of AUC, Classification Rate, Precision, Recall and
F1-score.

The time complexity of STARE can be determined as
O(W + rN2

G) [43], where W is the sliding window size,
NG is the number of non-empty sub-windows, and r is
the ratio of the number of density changed sub-windows
over NG. The time complexity of WPNN is given in Table
III. Hence, STARE has higher computational complexity as
it relies on the window size which is case dependent and
always has a larger size (in general, W >> R,n, nc,Mq,m).
Further, the speed of processing and predicting the class of
a newly available data point for the WPNN algorithm is
on average 0.290, 0.388, 0.348, 0.375 ms for datasets HTTP,
HTTP2, YahooA1, YahooA2, respectively.

5Note that the evaluation metrics for STARE are calculated based on the
attack ID generated by the algorithm.

We note that, as some of the probability density functions
in the YahooLab dataset are much more complex than others,
three different orders of B-spline, j0 = 1 : 10, and α = 1/P ,
with P = [1 : 10], are used by the WPNN versions. We also
note that, in the online scenario, STARE as well as all other
KDE based classification algorithms rely on sliding windows.
Hence, the storage of each data point inside the sliding
window is needed. In applications involving the analysis of
a large number of data points (millions or billions), the use of
such algorithms becomes prohibitive. In contrast, the proposed
WPNN approach, which only requires the storage of the last
data point, since it is based on an exponential discounting
strategy, has the same computational and space complexity
independent of any window size.

V. FINAL REMARKS

In this paper, a novel wavelet-based PNN suitable for
time-series and data stream applications is proposed. The
performance of this network has been compared to several
standard and state-of-the-art algorithms. Both synthetic and
real-world datasets have been used to assess it. Significant
performance enhancements are attained compared to state-of-
the-art algorithms. In particular, for the online environment,
it has the key advantage of constant computation time and
improved classification performance.

Although the proposed WPNN can achieve excellent online
performance by just changing the magnitude of the network
parameter w, future research could focus on hyper-parameter
automation to adapt to dynamic and complex data variations.

The proposed WPNN has constant computational complex-
ity and involves relatively simple calculations. Hence, it is
particularly suited for its implementation in cheap general-
purpose electronic hardware. This opens an interesting oppor-
tunity to add adaptive and decentralized learning to a vast
number of devices either connected or not connected to the
internet.

Other possible applications include website traffic analysis,
server resources monitoring, and network intrusion detection.
Such applications have characteristics of time-ordered, specific
number of features involved, imbalanced classes, fast arrival
rate, and possibly concept drifts over time. The proposed
WPNN can perfectly adapt to such characteristics in online
environments by recursively updating the network parameters
in low and constant time complexity without the model
retraining step. It can be deployed in either stationary or non-
stationary online environments.

REFERENCES

[1] D.F. Specht. Probabilistic neural networks for classification, mapping,
or associative memory. In Neural Networks, 1988., IEEE International
Conference on, pages 525 –532 vol.1, 1988.

[2] V. Georgiou, P. Alevizos, and M. Vrahatis. Novel approaches to proba-
bilistic neural networks through bagging and evolutionary estimating of
prior probabilities. Neural Processing Letters, 27(2):153–162, 2008.

[3] E. Parzen. On estimation of a probability density function and mode.
The annals of mathematical statistics, 33(3):1065–1076, 1962.

[4] K. Z. Mao, K. C. Tan, and W. Ser. Probabilistic neural-network structure
determination for pattern classification. IEEE Transactions on Neural
Networks, 11(4):1009–1016, 2000.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 14

[5] C.M. Bishop. Neural networks for pattern recognition. Clarendon press
Oxford, 1995.

[6] N.N. Céncov. Evaluation of an unknown distribution density from
observations. Soviet Mathematics Doklady, 3:1559–1562, 1962.

[7] B. Vidakovic. Statistical Modeling by Wavelets. Wiley New York, 1999.
[8] A.A. Safavi, J. Chen, and J.A. Romagnoli. Wavelet-based density

estimation and application to process monitoring. AIChE Journal,
43(5):1227–1241, 2004.

[9] M. Heinen and P. Engel. An incremental probabilistic neural network
for regression and reinforcement learning tasks. In Konstantinos Dia-
mantaras, Wlodek Duch, and Lazaros Iliadis, editors, Artificial Neural
Networks ICANN 2010, volume 6353 of Lecture Notes in Computer
Science, pages 170–179. Springer Berlin / Heidelberg, 2010.

[10] W. Xiaoxia, P. Tino, M. A. Fardal, S. Raychaudhury, and A. Babul. Fast
parzen window density estimator. In Neural Networks, 2009. IJCNN
2009. International Joint Conference on, pages 3267–3274, 2009.

[11] P. A. Kowalski and M. Kusy. Sensitivity analysis for probabilistic neural
network structure reduction. IEEE Transactions on Neural Networks and
Learning Systems, 29(5):1919–1932, 2018.

[12] A. V. Savchenko. Probabilistic neural network with complex exponential
activation functions in image recognition. IEEE Transactions on Neural
Networks and Learning Systems, 31(2):651–660, 2020.

[13] Zhichen Li, Huaicheng Yan, Hao Zhang, Xisheng Zhan, and Congzhi
Huang. Improved inequality-based functions approach for stability
analysis of time delay system. Automatica, 108:108416, 2019.

[14] Zhichen Li, Huaicheng Yan, Hao Zhang, Yan Peng, Ju H. Park, and
Yong He. Stability analysis of linear systems with time-varying delay
via intermediate polynomial-based functions. Automatica, 113:108756,
2020.

[15] Z. Li, Y. Bai, C. Huang, H. Yan, and S. Mu. Improved stability analysis
for delayed neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 29(9):4535–4541, 2018.

[16] Z. Li, H. Yan, H. Zhang, X. Zhan, and C. Huang. Stability analysis
for delayed neural networks via improved auxiliary polynomial-based
functions. IEEE Transactions on Neural Networks and Learning
Systems, 30(8):2562–2568, 2019.

[17] Q. Zhang and A. Benveniste. Wavelet networks. Neural Networks, IEEE
Transactions on, 3(6):889–898, 1992.

[18] Qing Yang, Lei Gu, Dazhi Wang, and Dongsheng Wu. Fault diagnosis
approach based on probabilistic neural network and wavelet analysis. In
2008 7th World Congress on Intelligent Control and Automation, pages
1796–1799, 2008.

[19] Seok Won Lee and Boo Hee Nam. Fingerprint recognition using
wavelet transform and probabilistic neural network. In IJCNN’99.
International Joint Conference on Neural Networks. Proceedings (Cat.
No.99CH36339), volume 5, pages 3276–3279 vol.5, 1999.

[20] F. Lin and K. Lu. Design of fuzzy probabilistic wavelet neural network
controller and its application in power control of grid-connected pv
system during grid faults. In 2016 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), pages 1725–1732, 2016.

[21] E.S. Garcı́a Treviño, V. Alarcón Aquino, and J.A. Barria. The radial
wavelet frame density estimator. Computational Statistics & Data
Analysis, 130:111 – 139, 2019.

[22] M. Thuillard. A review of wavelet networks, wavenets, fuzzy wavenets
and their applications. Advances in Computational Intelligence and
Learning, pages 43–60, 2002.

[23] S.G. Mallat. A Wavelet Tour of Signal Processing, Third Edition: The
Sparse Way. Academic Press, 3rd edition, 2008.

[24] B.W. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman and Hall/CRC, 1998.

[25] D.W. Scott. Multivariate Density Estimation: Theory, Practice, and
Visualization. Wiley-Interscience, 1992.

[26] E. Ribes-Gómez, S. McLoone, and G. Irwin. A taxonomy for wavelet
neural networks applied to nonlinear modelling. International Journal
of Systems Science, 39(6):607–627, 2008.

[27] T. Kugarajah and Q. Zhang. Multidimensional wavelet frames. Neural
Networks, IEEE Transactions on, 6(6):1552–1556, 1995.

[28] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, and D. Picard. Density
estimation by wavelet thresholding. The Annals of Statistics, 24(2):508–
539, 1996.

[29] Elias Masry. Multivariate probability density estimation by wavelet
methods: Strong consistency and rates for stationary time series.
Stochastic Processes and their Applications, 67(2):177–193, 1997.

[30] Huijun Guo and Junke Kou. Strong uniform convergence rates of wavelet
density estimators with size-biased data. Journal of Function Spaces,
2019, 2019.

[31] David L. Donoho, Iain M. Johnstone, Gérard Kerkyacharian, and Do-
minique Picard. Density estimation by wavelet thresholding. The Annals
of Statistics, 24(2):508 – 539, 1996.

[32] M. Zhong, D. Coggeshall, E. Ghaneie, T. Pope, M. Rivera, M. Geor-
giopoulos, G. C. Anagnostopoulos, M. Mollaghasemi, and S. Richie.
Gap-based estimation: Choosing the smoothing parameters for prob-
abilistic and general regression neural networks. IEEE International
Conference on Neural Networks - Conference Proceedings, pages 1870–
1877, 2006.

[33] M. Lichman. UCI machine learning repository, 2013.
[34] Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquı́n Derrac,

Salvador Garcı́a, Luciano Sánchez, and Francisco Herrera. Keel data-
mining software tool: data set repository, integration of algorithms and
experimental analysis framework. Journal of Multiple-Valued Logic &
Soft Computing, 17, 2011.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[37] J. Gama, P.P. Rodrigues, and R. Sebastião. Evaluating algorithms that
learn from data streams. In Proceedings of the 2009 ACM symposium
on Applied Computing, pages 1496–1500. ACM, 2009.

[38] Stephen D. Bay, Dennis F. Kibler, Michael J. Pazzani, and Padhraic
Smyth. UCI machine learning repository, 1999.

[39] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne.
On-line unsupervised outlier detection using finite mixtures with dis-
counting learning algorithms. Data Mining and Knowledge Discovery,
8(3):275–300, 2004.

[40] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed
analysis of the kdd cup 99 data set. In 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, pages
1–6, 2009.

[41] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg
Sander. Lof: identifying density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD international conference on Management of
data, pages 93–104, 2000.

[42] D. Pokrajac, A. Lazarevic, and L. J. Latecki. Incremental local outlier
detection for data streams. In 2007 IEEE Symposium on Computational
Intelligence and Data Mining, pages 504–515, 2007.

[43] Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. Ultrafast local outlier
detection from a data stream with stationary region skipping. In
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1181–1191, 2020.

[44] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-
Taylor, and John C Platt. Support vector method for novelty detection.
In Advances in neural information processing systems, pages 582–588,
2000.

[45] Parikshit Gopalan, Vatsal Sharan, and Udi Wieder. PIDForest: Anomaly
detection via partial identification. Advances in Neural Information
Processing Systems, 32, 2019.

[46] Haoran Ma, Benyamin Ghojogh, Maria N Samad, Dongyu Zheng, and
Mark Crowley. Isolation mondrian forest for batch and online anomaly
detection. In 2020 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 3051–3058. IEEE, 2020.

[47] Yuh-Jye Lee, Yi-Ren Yeh, and Yu-Chiang Frank Wang. Anomaly
detection via online oversampling principal component analysis. IEEE
transactions on knowledge and data engineering, 25(7):1460–1470,
2012.

[48] YahooLabs. S5 - A Labeled Anomaly Detection Dataset, version 1.0,
2015.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XXX 20XX 15

Edgar S. Garcı́a-Treviño received the Ph.D. degree
in electrical and electronic engineering from Impe-
rial College London, London, U.K., in 2014. From
2014 to 2019, he has been a Post-Doctoral Scholar
at several universities and institutes in Mexico. Cur-
rently, he is a senior researcher at the Universidad
Maya.

His current research interests include online algo-
rithms for data analysis as well as novel artificial
intelligence frameworks.

Pu Yang received the M.Eng. degree in electrical
and electronic engineering from Imperial College
London, London, U.K., in 2019. He is currently
pursuing the Ph.D. degree in electrical and electronic
engineering with Imperial College London, London,
U.K.

His research interests include anomaly detection,
online learning, and deep learning.

Javier A. Barria (M’02) received the Ph.D. degree
in electrical and electronic engineering from Impe-
rial College London, London, U.K., in 1994.

He is currently a Reader with the Intelligent
Systems and Networks Group, Department of Elec-
trical and Electronic Engineering, Imperial College
London. He has been the joint holder of several
European Union Framework and U.K. Engineering
and Physical Sciences Research Council project con-
tracts, mainly concern with his research interest on
monitoring strategies on networked systems.

Dr. Barria is a Fellow of the Institution of Engineering and Technology and
a Chartered Engineer in the U.K. He was a British Telecom Research Fellow
from 2001 to 2002. He is an Associated Editor of the IEEE Transactions on
Intelligent Transportation Systems

	Introduction
	Theoretical Background
	Probabilistic Neural Networks (PNN)
	Wavelets and Multiresolution analysis
	Wavelet Density Estimators (WDEs)
	Wavelet Neural Networks (WNNs)
	Multidimensional frames for neural networks
	Radial Wavelet Frames Density Estimators
	Density Estimation
	Convergence
	Hyper Parameters

	The RWFDE Formulation
	RWFDE Initialisation
	Updating Process
	Evaluating Process

	The proposed wavelet probabilistic neural network
	Wavelet Probabilistic Neural Networks (WPNN)
	Online and adaptive learning in WPNN
	WPNN construction
	WPNN training
	WPNN offline training
	WPNN online training

	WPNN testing
	WPNN parameters selection
	Coefficient adjustment: WPNN performance improvement
	Time Complexity of the online version of WPNN

	Performance assessment
	Offline classification
	Online classification in a stationary environment
	Online classification in a non-stationary environment
	Online classification using real-world datasets
	Benchmarking with alternative algorithms

	Final Remarks
	References
	Biographies
	Edgar S. García-Treviño
	Pu Yang
	Javier A. Barria (M’02)

