3,551 research outputs found

    Ambivalente Aristóteles: la distinta valoración de su filosofía en la formación del pensamiento político moderna

    Get PDF
    Un mismo proyecto, dos vías distintas. Aristóteles: el genio incomparable. La transición: Marsilio de Padua. Aristóteles: bestia ignorante. Religiones de baja densidad filosófica.Oneself projects, two different roads. Aristotle: the incomparable genius. The transition: Marsilio of Padua. Aristotle: ignorant beast. Religions of philosophical low density.FONDECyT (Chile) 105087

    Joint Access Point Selection and Power Allocation for Uplink Wireless Networks

    Full text link
    We consider the distributed uplink resource allocation problem in a multi-carrier wireless network with multiple access points (APs). Each mobile user can optimize its own transmission rate by selecting a suitable AP and by controlling its transmit power. Our objective is to devise suitable algorithms by which mobile users can jointly perform these tasks in a distributed manner. Our approach relies on a game theoretic formulation of the joint power control and AP selection problem. In the proposed game, each user is a player with an associated strategy containing a discrete variable (the AP selection decision) and a continuous vector (the power allocation among multiple channels). We provide characterizations of the Nash Equilibrium of the proposed game, and present a set of novel algorithms that allow the users to efficiently optimize their rates. Finally, we study the properties of the proposed algorithms as well as their performance via extensive simulations.Comment: Revised and Resubmitted to IEEE Transactions on Signal Processin

    Filosofía y vida filosófica

    Get PDF
    El propósito de este escrito es el de recordar que la filosofía es ante todo una manera de vivir en la cual la contemplación ocupa el lugar principal. El impulso originario de la vida filosófica es el amor a la verdad y no el odio por las injusticias, y esto descalifica las pretensiones de saber filosófico de algunas corrientes de pensamiento.The aim of this paper is to remember that Philosophy is mainly a way of life in which contemplation is the most important concern. The original impulse of philosophical life is love of the truth and not hatred against injustice. This aspect disqualifies the philoso- phical aspirations of some thought trends.Fil: Martínez Barrera, Jorge

    John Honnold and the Vienna Convention On the International Sale of Goods

    Get PDF

    Creonte, o la imprudencia

    Get PDF

    Tracing and isolating major mergers triggered in galaxy evolution : spatially resolved properties along the merger sequence

    Get PDF
    Interactions and mergers have proved to be fundamental mechanisms for galaxy evolution. Galaxy-galaxy encounters could induce inflows of material as well as the enhancement of star formation. They could also lead to outflows by (stellar or active galactic nuclear) feedback. Despite the efforts to characterize and to understand the evolution of the galactic components in the course of the merging event, few studies have focused on the change of the spatially resolved properties of interacting galaxies. Spatially resolved observations are necessary for a comprehensive understanding of interacting and merging galaxies since the properties of their components could change drastically across the whole galaxy. To unveil how these components unfold as the interaction evolves, it is required to map these galactic properties in a sample of merging galaxies covering a wide range of the interaction parameter space (covering for example interaction stages stellar masses). To quantify the impact of mergers and to disentangle those processes induced by secular evolution from those related to mergers, it is also required to have a homogeneous sample of non-interacting galaxies (i.e., observed, reduced and analyzed using the same instrument, pipeline, and methodologies as for the interacting sample). The CALIFA (Calar Alto Legacy Integral Field Area) survey is the first integral field survey in the nearby universe that satisfies these requirements. This survey provides data cubes for \sim 600 galaxies as a representative sample of the galactic population in the nearby Universe. It allows us to select a sample of interacting galaxies at different interaction stages and a well-match control sample, both sets of datacubes observed and reduced homogeneously. \\ In this thesis work we develop a common methodology to characterize and to analyze the spatially resolved information extracted from the CALIFA datacubes. In particular, we provide a method to measure the kinematic properties of velocity fields with no assumptions about the internal motions of galaxies. We also provide an estimate of the star formation and oxygen abundance of these two samples. Our studies are aimed at probing and to quantifying the impact of mergers on galaxy evolution. This is one of the first works aimed at statistically quantifying the impact of interactions and mergers in spatially resolved properties of galaxies. As a first step, we select a sample of 103 interacting galaxies at different stages of the interaction - from close pairs to merger remnants - and a sample of 80 non-interacting galaxies as control sample. We present our main three results as follows: \\ Using the methodology developed we determine the global major axis kinematic orientation (kinematic PA), the comparison between the receding and approaching kinematic sides (internal kinematic misalignment) and the radial deviations of the kinematic PA from a straight line (δ\deltaPAkin_{\mathrm{kin}}) for the stellar and ionized gas velocity fields of the 80 non-interacting galaxies. When we compare the global kinematic with the morphological major axis orientations, we find that morpho-kinematic position angle differences are smaller than 22 degrees in 90\% of the sample for both stellar and ionised gas components. Moreover, internal kinematic misalignments are generally smaller than 16 degrees. The global kinematic orientation for the stellar and the ionized gas components present a tight relation, which are consistent with circular-flow pattern motions (90\% of the sample has differences smaller than 16 degrees). This relation also holds, generally in barred galaxies across the bar and galaxy disc scales. Our findings suggest that even in the presence of strong bars, both the stellar and the gaseous components tend to globally follow the gravitational potential of the disk.\\ Results for non-interacting galaxies can be used to assess the degree of external distortions in interacting galaxies. Comparing these results with the sample of 103 interacting galaxies, we find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments mainly in galaxies with evident signatures of interaction. On the other hand, the level of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying internal misalignments comparable with those observed in the control sample. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δ\deltaPAkin_{\mathrm{kin}} are large for both samples. However, for a large fraction of interacting galaxies the ionised gas δ\deltaPAkin_{\mathrm{kin}} is larger than the typical values derived from isolated galaxies (48\%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42\% (28/66) of the interacting galaxies have misalignments larger than 16^{\circ}, compared to 10\% from the control sample. Our results show the impact of interactions on the motion of stellar and ionized gas as well as the wide variety of their spatially resolved kinematic distributions. This study also provides a local universe benchmark for kinematic studies in merging galaxies at high redshift. \\ Finally, from the CALIFA datacubes we extract the Hα\alpha equivalent width and the emission line flux maps, for several ions, of these two samples. Hα\alpha equivalent width is a proxy for the specific star formation rate (sSFR, which provides an indication of the current star-formation activity compared to previous activity) while the 2D emission line flux distributions provide information about the gas-phase metallicity particularly the oxygen abundance. We confirm the moderate enhancement (×\times 2-3 times) of sSFR for interacting galaxies in central regions as reported by previous studies; however, this parameter is comparable to the control sample when observed over extended regions. We find that control and interacting star forming galaxies share similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease with respect to the control objects at large aperture sizes in units of effective radius. Although the enhancement in central star formation and possible lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies

    A polarization-consistent model for alcohols to predict solvation free energies

    Get PDF
    Classical nonpolarizable models, normally based on a combination of Lennard-Jones sites and point charges, are extensively used to model thermodynamic properties of fluids, including solvation. An important shortcoming of these models is that they do not explicitly account for polarization effects, i.e., a description of how the electron density responds to changes in the molecular environment. Instead, polarization is implicitly included, in a mean-field sense, into the parameters of the model, usually by fitting to pure liquid properties (e.g., density). This causes problems when trying to describe thermodynamic properties that involve a change of phase (e.g., enthalpy of vaporization), that directly depend on the electronic response of the medium (e.g., dielectric constant), and that require mixing or solvation in different media (e.g., solvation free energies). Fully polarizable models present a natural route for addressing these limitations but at the price of a much higher computational cost. In this work, we combine the best of those two approaches by running fast simulations using nonpolarizable models and applying post facto corrections to the computed properties in order to account for the effects of polarization. By applying this new paradigm, a new united-atom force field for alcohols is developed that is able to predict both pure liquid properties, including dielectric constant, and solvation free energies in different solvents with a high degree of accuracy. This paves the way for the development of a generic classical nonpolarizable force field that can predict solvation of drug-like molecules in a variety of solvents
    corecore