7 research outputs found

    A non-conventional five piston double.-acting Stirling Engine filling system CFD simulation and experimental validation

    Get PDF
    Análisis mediante CFD y validación experimental de un sistema de carga para un motor Stirling. Validado y analizado experimentalmente en un motor de 5 pistones de doble acción.UMA Campus de Excelencia Internacional Andalucía TECH, Centro Stirlin

    The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator

    No full text
    Different numerical methods can be applied to the analysis of the flow through the Stirling engine regenerator. One growing approach is to model the regenerator as porous medium to simulate and design the full Stirling engine in three-dimensional (3-D) manner. In general, the friction resistance coefficients and heat transfer coefficient are experimentally obtained to describe the flow and thermal non-equilibrium through a porous medium. A finite volume method (FVM) based non-thermal equilibrium porous media modelling approach characterizing the fluid flow and heat transfer in a representative small detailed flow domain of the woven wire matrix is proposed here to obtain the porous media coefficients without further requirement of experimental studies. The results are considered to be equivalent to those obtained from the detailed woven wire matrix for the pressure drop and heat transfer. Once the equivalence between the models is verified, this approach is extended to model oscillating regeneration cycles through a full size regenerator porous media for two different woven wire matrix configurations of stacked and wound types. The results suggest that the numerical modelling approach proposed here can be applied with confidence to model the regenerator as a porous media in the multi-dimensional (multi-D) simulations of Stirling engines

    Numerical correlation for the pressure drop in Stirling engine heat exchangers

    No full text
    New correlation equations, to be valid for the pressure drop and heat exchange calculation under the developing transitional reciprocating flow encountered in Stirling heat exchangers are numerically derived. Reynolds-Averaged Navier–Stokes (RANS) equations based turbulence models are used to analyse laminar to turbulent reciprocating flow, focussing on the onset of turbulence and transitional reciprocating flow regime. The relative performance of four turbulence models in more accurately capturing the characteristics of the flow of interest is assessed in relation to overcoming the problems identified in previous numerical studies. The simulation results are compared with published and well-known experimental data for reciprocating pipe flows, indicating that the effects of the turbulence anisotropy need to be taken into account in order to accurately predict the laminar to turbulent transition. The anisotropic Reynolds stress turbulence model is selected as a best choice among the tested turbulence models for analysis of this transitory phenomenon based on the comparative qualitative and quantitative results. This model is used to evaluate the heat transfer and pressure drop and propose new correlations considering the working and dimensional characteristics of Stirling heat exchangers: 100 ≤ Reω ≤ 600, A0 ≤ 600, βcri > 761 and 40 ≤ L/D ≤ 120. These correlation equations reduce the unsteady 2D behaviour in reciprocating pipe flow into a manageable form that can be incorporated into Stirling engine performance codes. It is believed that the validated numerical model can be used with confidence for studying the transitional reciprocating flow and the obtained correlations, can be applied as a cost effective solution for the development of Stirling engine heat exchangers

    Experimental and numerical flow investigation of Stirling engine regenerator

    No full text
    This paper presents both preliminary experimental and numerical studies of pressure drop and heat transfer characteristics of Stirling engine regenerators. A test bench is designed and manufactured for testing different regenerators under oscillating flow conditions, while three-dimensional (3-D) numerical simulations are performed to numerically characterize the pressure drop phenomena through a wound woven wire matrix regenerator under different porosity and flow boundary conditions. The test bench operating condition range is initially determined based on the performance of the commercial, well-known Stirling engine called WhisperGen™. This oscillating flow test bench is essentially a symmetrical design, which allows two regenerator samples to be tested simultaneously under the same inflow conditions. The oscillating flow is generated by means of a linear motor which moves a piston in an oscillatory motion. Both the frequency and the stroke of the piston are modified to achieve different test conditions. In the numerical study, use of a FVM (finite volume method) based CFD (computational fluid dynamics) approach for different configurations of small volume matrices leads to a derivation of a two-coefficient based friction factor correlation equation, which could be later implemented in an equivalent porous media with a confidence for future regenerator flow and heat transfer analysis

    Experimental and numerical flow investigation of Stirling engine regenerator

    No full text
    This paper presents both preliminary experimental and numerical studies of pressure drop and heat transfer characteristics of Stirling engine regenerators. A test bench is designed and manufactured for testing different regenerators under oscillating flow conditions, while three-dimensional (3-D) numerical simulations are performed to numerically characterize the pressure drop phenomena through a wound woven wire matrix regenerator under different porosity and flow boundary conditions. The test bench operating condition range is initially determined based on the performance of the commercial, well-known Stirling engine called WhisperGen™. This oscillating flow test bench is essentially a symmetrical design, which allows two regenerator samples to be tested simultaneously under the same inflow conditions. The oscillating flow is generated by means of a linear motor which moves a piston in an oscillatory motion. Both the frequency and the stroke of the piston are modified to achieve different test conditions. In the numerical study, use of a FVM (finite volume method) based CFD (computational fluid dynamics) approach for different configurations of small volume matrices leads to a derivation of a two-coefficient based friction factor correlation equation, which could be later implemented in an equivalent porous media with a confidence for future regenerator flow and heat transfer analysis
    corecore