988 research outputs found
Rival bishops, rival cathedrals : the election of Cormac, archdeacon of Sodor, as bishop in 1331
Peer reviewedPublisher PD
Combining detergent/disinfectant with microfibre material provides a better control of microbial contaminants on surfaces than the use of water alone
The use of microfibre cloths with either water, detergent or disinfectant is currently recommended for hospital cleaning. We explore the efficacy of a microfibre cloth with either water or detergent/disinfectant or sporicidal products using the ASTM2967-15 standard against Staphylococcus aureus, Acinetobacter baumannii and spores Clostridium difficile spores. The use of detergent/disinfectant or sporicidal products had a significantly (ANOVA, p<0.001) better activity than water alone in reducing bacteria and spores’ viability, and in reducing the transfer microorganisms between surfaces. The use of water alone with a microfibre cloth is less effective and should not replace the use of biocidal products
Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes
BACKGROUND: Comparisons between the genomes of the closely related nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal high rates of rearrangement, with a bias towards within-chromosome events. To assess whether this pattern is true of nematodes in general, we have used genome sequence to compare two nematode species that last shared a common ancestor approximately 300 million years ago: the model C. elegans and the filarial parasite Brugia malayi. RESULTS: An 83 kb region flanking the gene for Bm-mif-1 (macrophage migration inhibitory factor, a B. malayi homolog of a human cytokine) was sequenced. When compared to the complete genome of C. elegans, evidence for conservation of long-range synteny and microsynteny was found. Potential C. elegans orthologs for II of the 12 protein-coding genes predicted in the B. malayi sequence were identified. Ten of these orthologs were located on chromosome I, with eight clustered in a 2.3 Mb region. While several, relatively local, intrachromosomal rearrangements have occurred, the order, composition, and configuration of two gene clusters, each containing three genes, was conserved. Comparison of B. malayi BAC-end genome survey sequence to C. elegans also revealed a bias towards intrachromosome rearrangements. CONCLUSIONS: We suggest that intrachromosomal rearrangement is a major force driving chromosomal organization in nematodes, but is constrained by the interdigitation of functional elements of neighboring genes
A Ship-Based Characterization of Coherent Boundary-Layer Structures Over the Lifecycle of a Marine Cold-Air Outbreak
Convective coherent structures shape the atmospheric boundary layer over the lifecycle of marine cold-air outbreaks (CAOs). Aircraft measurements have been used to characterize such structures in past CAOs. Yet, aircraft case studies are limited to snapshots of a few hours and do not capture how coherent structures, and the associated boundary-layer characteristics, change over the CAO time scale, which can be on the order of several days. We present a novel ship-based approach to determine the evolution of the coherent-structure characteristics, based on profiling lidar observations. Over the lifecycle of a multi-day CAO we show how these structures interact with boundary-layer characteristics, simultaneously obtained by a multi-sensor set-up. Observations are taken during the Iceland Greenland Seas Project’s wintertime cruise in February and March 2018. For the evaluated CAO event, we successfully identify cellular coherent structures of varying size in the order of 4 × 102 m to 104 m and velocity amplitudes of up to 0.5 m s−1 in the vertical and 1 m s−1 in the horizontal. The structures’ characteristics are sensitive to the near-surface stability and the Richardson number. We observe the largest coherent structures most frequently for conditions when turbulence generation is weakly buoyancy dominated. Structures of increasing size contribute efficiently to the overturning of the boundary layer and are linked to the growth of the convective boundary-layer depth. The new approach provides robust statistics for organized convection, which would be easy to extend by additional observations during convective events from vessels of opportunity operating in relevant areas.publishedVersio
Meningococcal genetic variation mechanisms viewed through comparative analysis of Serogroup C strain FAM18
Copyright @ 2007 Public Library of ScienceThe bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements) provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an impact on the interaction with the host tissues, and understanding these mechanisms is important to aid our understanding of the intimate and complex relationship between the human nasopharynx and the meningococcus.This work was supported by the Wellcome Trust through the Beowulf Genomics Initiative
Student Knowledge of Signs, Risk Factors, and Resources for Depression, Anxiety, Sleep Disorders, and Other Mental Health Problems on Campus
A mixed methods study sought to assess student knowledge of signs, risk factors, and campus services available for mental health disorders. A survey was completed by 831 students and three focus groups were conducted. Respondents felt more knowledgeable about depression than about anxiety and sleep disorders. Graduate students and seniors had a keener awareness of risk factors for anxiety and sophomores were in the greatest danger of failing to recognize these risks. Males often failed to recognize signs and risk factors for mental health problems. Support groups, courses, and workshops on managing relationships, transition to college, and specific mental health disorders are advocated
Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status
Background: GSL1 and GSL2, Gibberellin Stimulated-Like proteins (also known as Snakin-1 and Snakin-2), are cysteine-rich peptides from potato (Solanum tuberosum L.) with antimicrobial properties. Similar peptides in other species have been implicated in diverse biological processes and are hypothesised to play a role in several aspects of plant development, plant responses to biotic or abiotic stress through their participation in hormone crosstalk, and redox homeostasis. To help resolve the biological roles of GSL1 and GSL2 peptides we have undertaken an in depth analysis of the structure and expression of these genes in potato. Results: We have characterised the full length genes for both GSL1 (chromosome 4) and GSL2 (chromosome 1) from diploid and tetraploid potato using the reference genome sequence of potato, coupled with further next generation sequencing of four highly heterozygous tetraploid cultivars. The frequency of SNPs in GSL1 and GSL2 were very low with only one SNP every 67 and 53 nucleotides in exon regions of GSL1 and GSL2, respectively. Analysis of comprehensive RNA-seq data substantiated the role of specific promoter motifs in transcriptional control of gene expression. Expression analysis based on the frequency of next generation sequence reads established that GSL2 was expressed at a higher level than GSL1 in 30 out of 32 tissue and treatment libraries. Furthermore, both the GSL1 and GSL2 genes exhibited constitutive expression that was not up regulated in response to biotic or abiotic stresses, hormone treatments or wounding. Potato transformation with antisense knock-down expression cassettes failed to recover viable plants. Conclusions: The potato GSL1 and GSL2 genes are very highly conserved suggesting they contribute to an important biological function. The known antimicrobial activity of the GSL proteins, coupled with the FPKM analysis from RNA-seq data, implies that both genes contribute to the constitutive defence barriers in potatoes. The lethality of antisense knock-down expression of GSL1 and GSL2, coupled with the rare incidence of SNPs in these genes, suggests an essential role for this gene family. These features are consistent with the GSL protein family playing a role in several aspects of plant development in addition to plant defence against biotic stresses. © 2014 Meiyalaghan et al.; licensee BioMed Central Ltd
Recommended from our members
Evaluation of Lateglacial temperatures in the Southern Alps of New Zealand based on glacier modelling at Irishman Stream, Ben Ohau Range
Climate proxy records from the middle to high latitude Southern Hemisphere indicate that a Lateglacial (15,000-11,500 years ago) climate reversal, approximately coeval with the Antarctic Cold Reversal (ACR), interrupted a warming trend during deglaciation. In New Zealand, some palaeoclimate proxy records indicate a cool episode during the ACR (ca 14,500-12,500 years ago), while others do not express a significant change in climate. Recently published moraine maps and ages present an opportunity to improve the palaeoclimate interpretation through numerical modelling of glaciers. We use a coupled energy-balance and ice-flow model to quantify palaeoclimate from past glacier extent constrained by mapped and dated moraines in the headwaters of Irishman Stream, a high-elevation catchment in the Southern Alps. First, a suite of steady-state model runs is used to identify the temperature and precipitation forcing required to fit the modelled glacier to well-dated Lateglacial moraine crests. Second, time dependent glacier simulations forced by a nearby proxy temperature record derived from chironomids are used to assess the fit with the glacial geomorphic record. Steady-state experiments using an optimal parameter set demonstrate that the conditions under which the 13,000 year old moraine formed were 2.3-3.2 *C colder than present with the range in temperature corresponding to a +/- 20% variance in precipitation relative to the present-day. This reconstructed climate change relative to the present-day corresponds to an equilibrium-line altitude of ca 2000 +/- 40 m above sea level (asl), which is ca 400 m lower than present. Time-dependent simulations of glacier length produce ice advance to within 100 m of the 13,000 year old terminal moraine, indicating that the chironomid-based temperature forcing and moraine record provide consistent information about past climate. Our results, together with other climate proxy reconstructions from pollen records and marine sediment cores, support the notion that temperatures during the ACR in New Zealand were ~2-3 *C cooler than today
- …