199 research outputs found

    Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection

    Get PDF
    Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. © 2013 Kader et al

    The Temporal Singularity: time-accelerated simulated civilizations and their implications

    Full text link
    Provided significant future progress in artificial intelligence and computing, it may ultimately be possible to create multiple Artificial General Intelligences (AGIs), and possibly entire societies living within simulated environments. In that case, it should be possible to improve the problem solving capabilities of the system by increasing the speed of the simulation. If a minimal simulation with sufficient capabilities is created, it might manage to increase its own speed by accelerating progress in science and technology, in a way similar to the Technological Singularity. This may ultimately lead to large simulated civilizations unfolding at extreme temporal speedups, achieving what from the outside would look like a Temporal Singularity. Here we discuss the feasibility of the minimal simulation and the potential advantages, dangers, and connection to the Fermi paradox of the Temporal Singularity. The medium-term importance of the topic derives from the amount of computational power required to start the process, which could be available within the next decades, making the Temporal Singularity theoretically possible before the end of the century.Comment: To appear in the conference proceedings of the AGI-18 conference (published in the Springer's Lecture Notes in AI series

    Impact of Vitamin D Supplementation on Arterial Vasomotion, Stiffness and Endothelial Biomarkers in Chronic Kidney Disease Patients

    Get PDF
    Background: Cardiovascular events are frequent and vascular endothelial function is abnormal in patients with chronic kidney disease (CKD). We demonstrated endothelial dysfunction with vitamin D deficiency in CKD patients; however the impact of cholecalciferol supplementation on vascular stiffness and vasomotor function, endothelial and bone biomarkers in CKD patients with low 25-hydroxy vitamin D [25(OH)D] is unknown, which this study investigated. Methods: We assessed non-diabetic patients with CKD stage 3/4, age 17–80 years and serum 25(OH)D ,75 nmol/L. Brachial artery Flow Mediated Dilation (FMD), Pulse Wave Velocity (PWV), Augmentation Index (AI) and circulating blood biomarkers were evaluated at baseline and at 16 weeks. Oral 300,000 units cholecalciferol was administered at baseline and 8-weeks. Results: Clinical characteristics of 26 patients were: age 50614 (mean61SD) years, eGFR 41611 ml/min/1.73 m2, males 73%, dyslipidaemia 36%, smokers 23% and hypertensives 87%. At 16-week serum 25(OH)D and calcium increased (43616 to 84629 nmol/L, p,0.001 and 2.3760.09 to 2.4260.09 mmol/L; p = 0.004, respectively) and parathyroid hormone decreased (10.868.6 to 7.464.4; p = 0.001). FMD improved from 3.163.3% to 6.163.7%, p = 0.001. Endothelial biomarker concentrations decreased: E-Selectin from 566662123 to 525662058 pg/mL; p = 0.032, ICAM-1, 3.4560.01 to 3.1061.04 ng/mL; p = 0.038 and VCAM-1, 54633 to 42633 ng/mL; p = 0.006. eGFR, BP, PWV, AI, hsCRP, von Willebrand factor and Fibroblast Growth Factor-23, remained unchanged. Conclusion: This study demonstrates for the first time improvement of endothelial vasomotor and secretory functions with vitamin D in CKD patients without significant adverse effects on arterial stiffness, serum calcium or FGF-23. Trial Registration: ClinicalTrials.gov NCT0200571

    Liver Manipulation Causes Hepatocyte Injury and Precedes Systemic Inflammation in Patients Undergoing Liver Resection

    Get PDF
    Contains fulltext : 51690.pdf (publisher's version ) (Closed access)BACKGROUND: Liver failure following liver surgery is caused by an insufficient functioning remnant cell mass. This can be due to insufficient liver volume and can be aggravated by additional cell death during or after surgery. The aim of this study was to elucidate the causes of hepatocellular injury in patients undergoing liver resection. METHODS: Markers of hepatocyte injury (AST, GSTalpha, and L-FABP) and inflammation (IL-6) were measured in plasma of patients undergoing liver resection with and without intermittent inflow occlusion. To study the separate involvement of the intestines and the liver in systemic L-FABP release, arteriovenous concentration differences for L-FABP were measured. RESULTS: During liver manipulation, liver injury markers increased significantly. Arterial plasma levels and transhepatic and transintestinal concentration gradients of L-FABP indicated that this increase was exclusively due to hepatic and not due to intestinal release. Intermittent hepatic inflow occlusion, anesthesia, and liver transection did not further enhance arterial L-FABP and GSTalpha levels. Hepatocyte injury was followed by an inflammatory response. CONCLUSIONS: This study shows that liver manipulation is a leading cause of hepatocyte injury during liver surgery. A potential causal relation between liver manipulation and systemic inflammation remains to be established; but since the inflammatory response is apparently initiated early during major abdominal surgery, interventions aimed at reducing postoperative inflammation and related complications should be started early during surgery or beforehand

    25-hydroxyvitamin D concentration is inversely associated with serum MMP-9 in a cross-sectional study of African American ESRD patients

    Get PDF
    BACKGROUND: Circulating 25-hydroxyvitamin D [25(OH)D] concentration is inversely associated with peripheral arterial disease and hypertension. Vascular remodeling may play a role in this association, however, data relating vitamin D level to specific remodeling biomarkers among ESRD patients is sparse. We tested whether 25(OH)D concentration is associated with markers of vascular remodeling and inflammation in African American ESRD patients.METHODS: We conducted a cross-sectional study among ESRD patients receiving maintenance hemodialysis within Emory University-affiliated outpatient hemodialysis units. Demographic, clinical and dialysis treatment data were collected via direct patient interview and review of patients records at the time of enrollment, and each patient gave blood samples. Associations between 25(OH)D and biomarker concentrations were estimated in univariate analyses using Pearson's correlation coefficients and in multivariate analyses using linear regression models. 25(OH) D concentration was entered in multivariate linear regression models as a continuous variable and binary variable (<15 ng/ml and =15 ng/ml). Adjusted estimate concentrations of biomarkers were compared between 25(OH) D groups using analysis of variance (ANOVA). Finally, results were stratified by vascular access type.RESULTS: Among 91 patients, mean (standard deviation) 25(OH)D concentration was 18.8 (9.6) ng/ml, and was low (<15 ng/ml) in 43% of patients. In univariate analyses, low 25(OH) D was associated with lower serum calcium, higher serum phosphorus, and higher LDL concentrations. 25(OH) D concentration was inversely correlated with MMP-9 concentration (r = -0.29, p = 0.004). In multivariate analyses, MMP-9 concentration remained negatively associated with 25(OH) D concentration (P = 0.03) and anti-inflammatory IL-10 concentration positively correlated with 25(OH) D concentration (P = 0.04).CONCLUSIONS: Plasma MMP-9 and circulating 25(OH) D concentrations are significantly and inversely associated among ESRD patients. This finding may suggest a potential mechanism by which low circulating 25(OH) D functions as a cardiovascular risk factor

    25-hydroxyvitamin D concentration is inversely associated with serum MMP-9 in a cross-sectional study of African American ESRD patients

    Get PDF
    BACKGROUND: Circulating 25-hydroxyvitamin D [25(OH)D] concentration is inversely associated with peripheral arterial disease and hypertension. Vascular remodeling may play a role in this association, however, data relating vitamin D level to specific remodeling biomarkers among ESRD patients is sparse. We tested whether 25(OH)D concentration is associated with markers of vascular remodeling and inflammation in African American ESRD patients.METHODS: We conducted a cross-sectional study among ESRD patients receiving maintenance hemodialysis within Emory University-affiliated outpatient hemodialysis units. Demographic, clinical and dialysis treatment data were collected via direct patient interview and review of patients records at the time of enrollment, and each patient gave blood samples. Associations between 25(OH)D and biomarker concentrations were estimated in univariate analyses using Pearson's correlation coefficients and in multivariate analyses using linear regression models. 25(OH) D concentration was entered in multivariate linear regression models as a continuous variable and binary variable (<15 ng/ml and =15 ng/ml). Adjusted estimate concentrations of biomarkers were compared between 25(OH) D groups using analysis of variance (ANOVA). Finally, results were stratified by vascular access type.RESULTS: Among 91 patients, mean (standard deviation) 25(OH)D concentration was 18.8 (9.6) ng/ml, and was low (<15 ng/ml) in 43% of patients. In univariate analyses, low 25(OH) D was associated with lower serum calcium, higher serum phosphorus, and higher LDL concentrations. 25(OH) D concentration was inversely correlated with MMP-9 concentration (r = -0.29, p = 0.004). In multivariate analyses, MMP-9 concentration remained negatively associated with 25(OH) D concentration (P = 0.03) and anti-inflammatory IL-10 concentration positively correlated with 25(OH) D concentration (P = 0.04).CONCLUSIONS: Plasma MMP-9 and circulating 25(OH) D concentrations are significantly and inversely associated among ESRD patients. This finding may suggest a potential mechanism by which low circulating 25(OH) D functions as a cardiovascular risk factor

    Rapid Regulatory T-Cell Response Prevents Cytokine Storm in CD28 Superagonist Treated Mice

    Get PDF
    Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis

    Cell Free DNA of Tumor Origin Induces a 'Metastatic' Expression Profile in HT-29 Cancer Cell Line

    Get PDF
    BACKGROUND: Epithelial cells in malignant conditions release DNA into the extracellular compartment. Cell free DNA of tumor origin may act as a ligand of DNA sensing mechanisms and mediate changes in epithelial-stromal interactions. AIMS: To evaluate and compare the potential autocrine and paracrine regulatory effect of normal and malignant epithelial cell-related DNA on TLR9 and STING mediated pathways in HT-29 human colorectal adenocarcinoma cells and normal fibroblasts. MATERIALS AND METHODS: DNA isolated from normal and tumorous colonic epithelia of fresh frozen surgically removed tissue samples was used for 24 and 6 hour treatment of HT-29 colon carcinoma and HDF-alpha fibroblast cells. Whole genome mRNA expression analysis and qRT-PCR was performed for the elements/members of TLR9 signaling pathway. Immunocytochemistry was performed for epithelial markers (i.e. CK20 and E-cadherin), DNA methyltransferase 3a (DNMT3a) and NFkappaB (for treated HDFalpha cells). RESULTS: Administration of tumor derived DNA on HT29 cells resulted in significant (p/=1, p/=1, p</=0.05), including increased expression of key adaptor molecules of TLR9 pathway (e.g. MYD88, IRAK2, NFkappaB, IL8, IL-1beta), STING pathway (ADAR, IRF7, CXCL10, CASP1) and the FGF2 gene. CONCLUSIONS: DNA from tumorous colon epithelium, but not from the normal epithelial cells acts as a pro-metastatic factor to HT-29 cells through the overexpression of pro-metastatic genes through TLR9/MYD88 independent pathway. In contrast, DNA derived from healthy colonic epithelium induced TLR9 and STING signaling pathway in normal fibroblasts

    Calcitriol modulates the CD46 pathway in T cells

    Get PDF
    The complement regulator CD46 is a costimulatory molecule for human T cells that induces a regulatory Tr1 phenotype, characterized by large amounts of IL-10 secretion. Secretion of IL-10 upon CD46 costimulation is largely impaired in T cells from patients with multiple sclerosis (MS). Vitamin D can exert a direct effect on T cells, and may be beneficial in several pathologies, including MS. In this pilot study, we examined whether active vitamin D (1,25(OH)2D3 or calcitriol) could modulate the CD46 pathway and restore IL-10 production by CD46-costimulated CD4+ T cells from patients with MS. In healthy T cells, calcitriol profoundly affects the phenotype of CD46-costimulated CD4+ T cells, by increasing the expression of CD28, CD25, CTLA-4 and Foxp3 while it concomitantly decreased CD46 expression. Similar trends were observed in MS CD4+ T cells except for CD25 for which a striking opposite effect was observed: while CD25 was normally induced on MS T cells by CD46 costimulation, addition of calcitriol consistently inhibited its induction. Despite the aberrant effect on CD25 expression, calcitriol increased the IL-10:IFNc ratio, characteristic of the CD46-induced Tr1 phenotype, in both T cells from healthy donors and patients with MS. Hence, we show that calcitriol affects the CD46 pathway, and that it promotes anti-inflammatory responses mediated by CD46. Moreover, it might be beneficial for T cell responses in MS
    corecore