20 research outputs found

    LA SOUS-UNITE REGULATRICE DE TYPE I (RI) DE LA PROTEINE KINASE DEPENDANTE DE L'AMPC (ROLES, EXPRESSION ET LOCALISATION)

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Characterization and localization of the mProx1 gene directly upstream of the mouse α-globin gene cluster: Identification of a polymorphic direct repeat in the 5′UTR

    No full text
    The α-globin major regulatory element (αMRE) positioned far upstream of the gene cluster is essential for the proper expression of the α-globin genes. Analysis of the human and mouse α-globin Upstream Flanking Regions (αUFR) has identified three nonglobin genes in the order Dist1-MPG-Prox1-α-globin. Further characterization of the whole region indicates that the αMRE and several other erythroid DNase HSSs are associated with the transcription unit of the Prox1 gene. In this paper we describe the characterization and localization of the mouse Prox1 cDNA and compare it with its human homolog, the -14 gene, and another human cDNA sequence named hProx1. Our results show a strong conservation between the -14 gene and the mouse Prox1 gene with the exception of the first exon of the mProx1 gene. This exon is absent in the -14 cDNA but is present and conserved in the human Prox1 cDNA, indicating that the human -14/hProx1 gene is alternatively spliced or transcribed. The mProx1 gene encodes a predicted protein of 491 amino acids (aa) whose function is not known. In the 5′UTR of this gene, a 35-bp repeat (VNTR) is positioned, which is highly polymorphic among laboratory inbred mice (Mus domesticus). Our results strongly suggest that the mProx1 VNTR arose during the divergence of M. spretus and M. domesticus. Besides its use in evolutionary studies and positional cloning, the mProx1 VNTR might be invaluable for monitoring the expression of a transgenic mProx1 gene. The cloning of the mProx1 gene will be helpful to analyze its possible role on α-globin as well on MPG expression in the mouse

    Muscle-regulated expression and determinants for neuromuscular junctional localization of the mouse RIα regulatory subunit of cAMP- dependent protein kinase

    No full text
    In skeletal muscle, transcription of the gene encoding the mouse type Iα (RIα) subunit of the cAMP-dependent protein kinase is initiated from the alternative noncoding first exons 1a and 1b. Here, we report that activity of the promoter upstream of exon 1a (Pa) depends on two adjacent E boxes (E1 and E2) in NIH 3T3-transfected fibroblasts as well as in intact muscle. Both basal activity and MyoD transactivation of the Pa promoter require binding of the upstream stimulating factors (USF) to E1. E2 binds either an unknown protein in a USF/E1 complex-dependent manner or MyoD. Both E2-bound proteins seem to function as repressors, but with different strengths, of the USF transactivation potential. Previous work has shown localization of the RIα protein at the neuromuscular junction. Using DNA injection into muscle of plasmids encoding segments of RIα or RIIα fused to green fluorescent protein, we demonstrate that anchoring at the neuromuscular junction is specific to RIα subunits and requires the amino-terminal residues 1–81. Mutagenesis of Phe-54 to Ala in the full-length RIα–green fluorescent protein template abolishes localization, indicating that dimerization of RIα is essential for anchoring. Moreover, two other hydrophobic residues, Val-22 and Ile-27, are crucial for localization of RIα at the neuromuscular junction. These amino acids are involved in the interaction of the Caenorhabditis elegans type Iα homologue R(CE) with AKAP(CE) and for in vitro binding of RIα to dual A-kinase anchoring protein 1. We also show enrichment of dual A-kinase anchoring protein 1 at the neuromuscular junction, suggesting that it could be responsible for RIα tethering at this site

    Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo

    No full text
    The stabilisation of acetylcholine receptors (AChRs) at the neuromuscular junction depends on muscle activity and the cooperative action of myosin Va and protein kinase A (PKA) type I. To execute its function, PKA has to be present in a subsynaptic microdomain where it is enriched by anchoring proteins. Here, we show that the AChR-associated protein, rapsyn, interacts with PKA type I in C2C12 and T-REx293 cells as well as in live mouse muscle beneath the neuromuscular junction. Molecular modelling, immunoprecipitation and bimolecular fluorescence complementation approaches identify an α-helical stretch of rapsyn to be crucial for binding to the dimerisation and docking domain of PKA type I. When expressed in live mouse muscle, a peptide encompassing the rapsyn α-helical sequence efficiently delocalises PKA type I from the neuromuscular junction. The same peptide, as well as a rapsyn construct lacking the α-helical domain, induces severe alteration of acetylcholine receptor turnover as well as fragmentation of synapses. This shows that rapsyn anchors PKA type I in close proximity to the postsynaptic membrane and suggests that this function is essential for synapse maintenance

    PDZK1: II. an anchoring site for the PKA-binding protein D-AKAP2 in renal proximal tubular cells

    Get PDF
    BACKGROUND: PDZK1, a multiple PDZ protein, was recently found to interact with the type IIa Na/Pi cotransporter (NaPi-IIa) in renal proximal tubular cells. In a preceding study, yeast two-hybrid screens using single PDZ domains of PDZK1 as baits were performed. Among the identified proteins, a C-terminal fragment of the dual-specific A-kinase anchoring protein 2 (D-AKAP2) was obtained by screening PDZ domain 4. METHODS: After its molecular cloning by means of RACE, the renal expression of D-AKAP2 was analyzed by real-time polymerase chain reaction (PCR) and immunohistochemistry. Protein interactions were characterized by overlays, pull-downs, and immunoprecipitations from transfected opossum kidney (OK) cells. RESULTS: Based on 5'-RACE and PDZK1 overlays of mouse kidney cortex separated by two-dimensional electrophoresis, it was suggested that the renal isoform of D-AKAP2 in mouse comprises 372 amino acids and exists as a protein of >40 kD. Immunohistochemistry and real-time PCR localized D-AKAP2 only to the subapical pole of proximal tubular cells in mouse kidney. In pull-down experiments, D-AKAP2 tightly bound PDZK1 as well as N+/H+ exchanger regulator factor (NHERF-1), but the latter with an apparent fourfold lower affinity. Similarly, His-tagged D-AKAP2 specifically retained PDZK1 from mouse kidney cortex homogenate. In addition, myc-tagged D-AKAP2 and HA-tagged PDZK1 co-immunoprecipitated from transfected OK cells. CONCLUSION: We conclude that D-AKAP2 anchors protein kinase A (PKA) to PDZK1 and to a lesser extent to NHERF-1. Since PDZK1 and NHERF-1 both sequester NaPi-IIa to the apical membrane, D-AKAP2 may play an important role in the parathyroid hormone (PTH)-mediated regulation of NaPi-IIa by compartmentalization of PKA

    Regulation of intracellular cyclic AMP in skeletal muscle cells involves the efflux of cyclic nucleotide to the extracellular compartment

    No full text
    1. This report analyses the intracellular and extracellular accumulation of cyclic AMP in primary rat skeletal muscle cultures, after direct and receptor-dependent stimulation of adenylyl cyclase (AC). 2. Isoprenaline, calcitonin gene-related peptide (CGRP) and forskolin induced a transient increase in the intracellular cyclic AMP that peaked 5 min after onset stimulation. 3. Under stimulation with isoprenaline or CGRP, the intracellular cyclic AMP initial rise was followed by an exponential decline, reaching 46 and 52% of peak levels in 10 min, respectively. 4. Conversely, the forskolin-dependent accumulation of intracellular cyclic AMP decreased slowly and linearly, reaching 49% of the peak level in 30 min. 5. The loss of intracellular cyclic AMP from peak levels, induced by direct or receptor-induced activation of AC, was followed by an increase in the extracellular cyclic AMP. 6. This effect was independent on PDEs, since it was obtained in the presence of 3-isobutyl-1-methylxanthine (IBMX). 7. Besides, in isoprenaline treated cells, the beta-adrenoceptor antagonist propranolol reduced both intra- and extracellular accumulation of cyclic AMP, whereas the organic anion transporter inhibitor probenecid reduced exclusively the extracellular accumulation. 8. Together our data show that direct or receptor-dependent activation of skeletal muscle AC results in a transient increase in the intracellular cyclic AMP, despite the continuous presence of the stimulus. The temporal declining of intracellular cyclic AMP was not dependent on the cyclic AMP breakdown but associated to the efflux of cyclic nucleotide to the extracellular compartment, by an active transport since it was prevented by probenecid
    corecore