2,855 research outputs found
A Simple Grand Unified Relation between Neutrino Mixing and Quark Mixing
It is proposed that all flavor mixing is caused by the mixing of the three
quark and lepton families with vectorlike fermions in 5 + 5-bar multiplets of
SU(5). This simple assumption implies that both V_{CKM} and U_{MNS} are
generated by a single matrix. The entire 3-by-3 complex mass matrix of the
neutrinos M_{nu} is then found to have a simple expression in terms of two
complex parameters and an overall scale. Thus, all the presently unknown
neutrino parameters are predicted. The best fits are for theta_{atm} less than
or approximately 40 degrees. The leptonic Dirac CP phase is found to be
somewhat greater than pi radians.Comment: 10 pages, 4 figures, one table. Typos correcte
Absolutely stable proton and lowering the gauge unification scale
A unified model is constructed, based on flipped SU(5) in which the proton is absolutely stable. The model requires the existence of new leptons with masses of order the weak scale. The possibility that the unification scale could be extremely low is discussed
Reflections on the US College Loans System: Lessons from Australia and England
There is wide agreement that the US student loan system faces significant problems. Seven million borrowers are in default and many more are not repaying for reasons such as returning to school, or economic hardship. The stress of repayments faced by many students results at least in part from the design of US student loans. Specifically, loans are organised like a mortgage, with fixed monthly repayments over a fixed period of time, creating a high repayment burden on borrowers with low income. This paper draws on the experience of the income-contingent loan (ICL) systems operating in England and Australia, in which monthly or two-weekly repayments are related to the borrower's income in that period, thus building in automatic insurance against inability to repay during periods of low income. We discuss the design of this type of loan in detail since such an exercise seems to be largely absent in the US literature. Drawing on data from the US Current Population Survey (CPS) we provide two main empirical contributions: a stylised illustration of the revenue and distributional implications of different hypothetical ICL arrangements for the USA; and an illustration of repayment problems faced by low-earning borrowers in the US loan system, including a plausible example of adverse outcomes with respect to Stafford loans. Importantly, we compare repayment burdens under the existing and alternative systems. Our illustrations show how US mortgage-type loans can create financial difficulties for a significant minority of US borrowers, difficulties which an ICL is designed to address. We note also that the current small and ineffective income-based repayment system in the US has few of the characteristics of an ideal ICL
The College News, 1936-04-08, Vol. 22, No. 19
Bryn Mawr College student newspaper. Merged with The Haverford News in 1968 to form the Bi-college News (with various titles from 1968 on). Published weekly (except holidays) during the academic year
The anomalous U(1) global symmetry and flavors from an SU(5) x SU(5) GUT in orbifold compactification
In string compactifications, frequently there appears the anomalous U(1)
gauge symmetry which belonged to E8E8 of the heterotic string. This
anomalous U(1) gauge boson obtains mass at the compactification scale, just
below GeV, by absorbing one pseudoscalar (corresponding to the
model-independent axion) from the second rank anti-symmetric tensor field
.
Below the compactification scale, there results a global symmetry U(1) whose charge is the original gauge U(1) charge. This is
the most natural global symmetry, realizing the "invisible" axion. This global
symmetry U(1) is suitable for a flavor symmetry. In the simplest
compactification model with the flipped SU(5) grand unification, we calculate
all the low energy parameters in terms of the vacuum expectation values of the
standard model singlets.Comment: 18 pages, 4 figur
Axion Protection from Flavor
The QCD axion fails to solve the strong CP problem unless all explicit PQ
violating, Planck-suppressed, dimension n<10 operators are forbidden or have
exponentially small coefficients. We show that all theories with a QCD axion
contain an irreducible source of explicit PQ violation which is proportional to
the determinant of the Yukawa interaction matrix of colored fermions.
Generically, this contribution is of low operator dimension and will
drastically destabilize the axion potential, so its suppression is a necessary
condition for solving the strong CP problem. We propose a mechanism whereby the
PQ symmetry is kept exact up to n=12 with the help of the very same flavor
symmetries which generate the hierarchical quark masses and mixings of the SM.
This "axion flavor protection" is straightforwardly realized in theories which
employ radiative fermion mass generation and grand unification. A universal
feature of this construction is that the heavy quark Yukawa couplings are
generated at the PQ breaking scale.Comment: 16 pages, 2 figure
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
Efficient mm-wave photomodulation via coupled Fabry–Perot cavities
This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this recordData availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.An efficient mm-wave photomodulator is designed based on coupled Fabry–Perot modes in a low-lifetime silicon wafer and an adjacent cavity formed from a transparent reflector, such as indium tin oxide. The modulation of a reflected beam using this coupled-cavity design is increased by a factor of 7 compared with that from an isolated silicon wafer, while also introducing a degree of tunability and maintaining low angular dispersion. For the particular design built and tested, a modulation of 32% is achieved for an extremely low optical illumination of just 0.006W/cm2 and with a maximum operation rate of more than 3 kHz. The large increase in modulation, coupled with the flexibility of the design and the fact that all components can be industrially manufactured, makes this photomodulator a promising candidate for many communication, imaging, and sensing applications.Engineering and Physical Sciences Research Council (EPSRC)QinetiQ Ltd
- …