711 research outputs found

    Vector-meson contributions do not explain the rate and spectrum in K_L -> pi0 gamma gamma

    Full text link
    We analyze the recent NA48 data for the reaction K_L -> pi0 gamma gamma with and without the assumption of vector meson dominance (VMD). We find that the data is well described by a three-parameter expression inspired by O(p^6) chiral perturbation theory. We also find that it is impossible to fit the shape of the decay distribution and the overall rate simultaneously if one imposes the VMD constraints on the three parameters. We comment on the different fits and their implications for the CP-conserving component of the decay K_L -> pi0 e+ e-.Comment: Version accepted for publication on Phys. Rev. D. 19 pages, LaTeX, 8 figures, uses epsf.st

    The Strong CP Problem and Axions

    Get PDF
    I describe how the QCD vacuum structure, necessary to resolve the U(1)AU(1)_A problem, predicts the presence of a P, T and CP violating term proportional to the vacuum angle θˉ\bar{\theta}. To agree with experimental bounds, however, this parameter must be very small (θˉ109(\bar{\theta} \leq 10^{-9}). After briefly discussing some possible other solutions to this, so-called, strong CP problem, I concentrate on the chiral solution proposed by Peccei and Quinn which has associated with it a light pseudoscalar particle, the axion. I discuss in detail the properties and dynamics of axions, focusing particularly on invisible axion models where axions are very light, very weakly coupled and very long-lived. Astrophysical and cosmological bounds on invisible axions are also briefly touched upon.Comment: 14 pages, to appear in the Lecture Notes in Physics volume on Axions, (Springer Verlag

    Spontaneous CP Violating Phase as The CKM Matrix Phase

    Full text link
    We propose that the CP violating phase in the CKM mixing matrix is identical to the CP phases responsible for the spontaneous CP violation in the Higgs potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is constructed to realize this idea. The CP violating phase does not vanish when all Higgs masses become large. There are flavor changing neutral current (FCNC) interactions mediated by neutral Higgs bosons at the tree level. However, unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms of the quark masses and CKM mixing angles. Implications for meson-anti-meson mixing, including recent data on DDˉD-\bar D mixing, and neutron electric dipole moment (EDM) are studied. We find that the neutral Higgs boson masses can be at the order of one hundred GeV. The neutron EDM can be close to the present experimental upper bound.Comment: 16 pages, RevTex. Several typos corrected, and one reference adde

    Theta angle versus CP violation in the leptonic sector

    Get PDF
    Assuming that the axion mechanism of solving the strong CP problem does not exist and the vanishing of theta at tree level is achieved by some model-building means, we study the naturalness of having large CP-violating sources in the leptonic sector. We consider the radiative mechanisms which transfer a possibly large CP-violating phase in the leptonic sector to the theta parameter. It is found that large theta cannot be induced in the models with one Higgs doublet as at least three loops are required in this case. In the models with two or more Higgs doublets the dominant source of theta is the phases in the scalar potential, induced by CP violation in leptonic sector. Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking parameter A_l generates the corrections to the theta angle already at one loop. These corrections are large, excluding the possibility of large phases, unless the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure

    Rapid X-ray Variability of Seyfert 1 Galaxies

    Full text link
    The rapid and seemingly random fluctuations in X-ray luminosity of Seyfert galaxies provided early support for the standard model in which Seyferts are powered by a supermassive black hole fed from an accretion disc. However, since EXOSAT there has been little opportunity to advance our understanding of the most rapid X-ray variability. Observations with XMM-Newton have changed this. We discuss some recent results obtained from XMM-Newton observations of Seyfert 1 galaxies. Particular attention will be given to the remarkable similarity found between the timing properties of Seyferts and black hole X-ray binaries, including the power spectrum and the cross spectrum (time delays and coherence), and their implications for the physical processes at work in Seyferts.Comment: To appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Constraining neutrino oscillation parameters with current solar and atmospheric data

    Get PDF
    We analyze the impact of recent solar, atmospheric and reactor data in the determination of the neutrino oscillation parameters, taking into account that both the solar nu_e and the atmospheric nu_mu may convert to a mixture of active and sterile neutrinos. We use the most recent global solar neutrino data, including the 1496-day Super-K neutrino data sample, and we investigate in detail the impact of the SNO neutral current, spectral and day/night data by performing also an analysis using only the charged current rate from SNO. The implications of the first 145.1 days of KamLAND data on the determination of the solar neutrino parameters are also discussed in detail. We confirm the clear preference of solar+reactor data for the pure active LMA-MSW solution of the solar neutrino problem, and obtain that the LOW, VAC, SMA and Just-So^2 solutions are disfavored with a Delta_chi^2 = 22, 22, 36, 44, respectively. Furthermore, we find that the global solar data constrains the admixture of a sterile neutrino to be less than 43% at 99% CL. By performing an improved fit of the atmospheric data, we also update the corresponding regions of oscillation parameters. We find that the recent atmospheric Super-K (1489-day) and MACRO data have a strong impact on constraining a sterile component in atmospheric oscillations: if the nu_mu is restricted to the atmospheric mass states only a sterile admixture of 16% is allowed at 99% CL, while a bound of 35% is obtained in the unconstrained case. Pure sterile oscillations are disfavored with a Delta_chi^2 = 34.6 compared to the pure active case.Comment: 28 pages, LaTeX file using RevTEX4, 12 figures and 3 tables included. Improved version including the new KamLAND dat

    Astrophysical Axion Bounds

    Get PDF
    Axion emission by hot and dense plasmas is a new energy-loss channel for stars. Observational consequences include a modification of the solar sound-speed profile, an increase of the solar neutrino flux, a reduction of the helium-burning lifetime of globular-cluster stars, accelerated white-dwarf cooling, and a reduction of the supernova SN 1987A neutrino burst duration. We review and update these arguments and summarize the resulting axion constraints.Comment: Contribution to Axion volume of Lecture Notes in Physics, 20 pages, 3 figure

    Measuring Black Hole Spin using X-ray Reflection Spectroscopy

    Full text link
    I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on "best practices" that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GROJ1655-40 and 4U1543-475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the referencing of the discovery of soft lags in 1H0707-495 (which were in fact first reported in Fabian et al. 2009

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ
    corecore