68 research outputs found

    Toward a chemical reanalysis in a coupled chemistry-climate model: an evaluation of MOPITT CO assimilation and its impact on tropospheric composition

    Get PDF
    We examine in detail a 1 year global reanalysis of carbon monoxide (CO) that is based on joint assimilation of conventional meteorological observations and Measurement of Pollution in The Troposphere (MOPITT) multispectral CO retrievals in the Community Earth System Model (CESM). Our focus is to assess the impact to the chemical system when CO distribution is constrained in a coupled full chemistry-climate model like CESM. To do this, we first evaluate the joint reanalysis (MOPITT Reanalysis) against four sets of independent observations and compare its performance against a reanalysis with no MOPITT assimilation (Control Run). We then investigate the CO burden and chemical response with the aid of tagged sectoral CO tracers. We estimate the total tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371 ± 12% Tg for MOPITT Reanalysis and 291 ± 9% Tg for Control Run. Our multispecies analysis of this difference suggests that (a) direct emissions of CO and hydrocarbons are too low in the inventory used in this study and (b) chemical oxidation, transport, and deposition processes are not accurately and consistently represented in the model. Increases in CO led to net reduction of OH and subsequent longer lifetime of CH4 (Control Run: 8.7 years versus MOPITT Reanalysis: 9.3 years). Yet at the same time, this increase led to 5-10% enhancement of Northern Hemisphere O3 and overall photochemical activity via HOx recycling. Such nonlinear effects further complicate the attribution to uncertainties in direct emissions alone. This has implications to chemistry-climate modeling and inversion studies of longer-lived species

    Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ

    Get PDF
    The Korea-United States Air Quality Study (KORUS-AQ) took place in spring 2016 to better understand air pollution in Korea. In support of KORUS-AQ, 2554 whole air samples (WAS) were collected aboard the NASA DC-8 research aircraft and analyzed for 82 C₁–C₁₀ volatile organic compounds (VOCs) using multi-column gas chromatography. Together with fast-response measurements from other groups, the air samples were used to characterize the VOC composition in Seoul and surrounding regions, determine which VOCs are major ozone precursors in Seoul, and identify the sources of these reactive VOCs. (1) The WAS VOCs showed distinct signatures depending on their source origins. Air collected over Seoul had abundant ethane, propane, toluene and n-butane while plumes from the Daesan petrochemical complex were rich in ethene, C₂–C₆ alkanes and benzene. Carbonyl sulfide (COS), CFC-113, CFC-114, carbon tetrachloride (CCl₄) and 1,2-dichloroethane were good tracers of air originating from China. CFC-11 was also elevated in air from China but was surprisingly more elevated in air over Seoul. (2) Methanol, isoprene, toluene, xylenes and ethene were strong individual contributors to OH reactivity in Seoul. However methanol contributed less to ozone formation based on photochemical box modeling, which better accounts for radical chemistry. (3) Positive Matrix Factorization (PMF) and other techniques indicated a mix of VOC source influences in Seoul, including solvents, traffic, biogenic, and long-range transport. The solvent and traffic sources were roughly equal using PMF, and the solvents source was stronger in the KORUS-AQ emission inventory. Based on PMF, ethene and propene were primarily associated with traffic, and toluene, ethylbenzene and xylenes with solvents, especially non-paint solvents for toluene and paint solvents for ethylbenzene and xylenes. This suggests that VOC control strategies in Seoul could continue to target vehicle exhaust and paint solvents, with additional regulations to limit the VOC content in a variety of non-paint solvents

    Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ

    Get PDF
    The Korea-United States Air Quality Study (KORUS-AQ) took place in spring 2016 to better understand air pollution in Korea. In support of KORUS-AQ, 2554 whole air samples (WAS) were collected aboard the NASA DC-8 research aircraft and analyzed for 82 C₁–C₁₀ volatile organic compounds (VOCs) using multi-column gas chromatography. Together with fast-response measurements from other groups, the air samples were used to characterize the VOC composition in Seoul and surrounding regions, determine which VOCs are major ozone precursors in Seoul, and identify the sources of these reactive VOCs. (1) The WAS VOCs showed distinct signatures depending on their source origins. Air collected over Seoul had abundant ethane, propane, toluene and n-butane while plumes from the Daesan petrochemical complex were rich in ethene, C₂–C₆ alkanes and benzene. Carbonyl sulfide (COS), CFC-113, CFC-114, carbon tetrachloride (CCl₄) and 1,2-dichloroethane were good tracers of air originating from China. CFC-11 was also elevated in air from China but was surprisingly more elevated in air over Seoul. (2) Methanol, isoprene, toluene, xylenes and ethene were strong individual contributors to OH reactivity in Seoul. However methanol contributed less to ozone formation based on photochemical box modeling, which better accounts for radical chemistry. (3) Positive Matrix Factorization (PMF) and other techniques indicated a mix of VOC source influences in Seoul, including solvents, traffic, biogenic, and long-range transport. The solvent and traffic sources were roughly equal using PMF, and the solvents source was stronger in the KORUS-AQ emission inventory. Based on PMF, ethene and propene were primarily associated with traffic, and toluene, ethylbenzene and xylenes with solvents, especially non-paint solvents for toluene and paint solvents for ethylbenzene and xylenes. This suggests that VOC control strategies in Seoul could continue to target vehicle exhaust and paint solvents, with additional regulations to limit the VOC content in a variety of non-paint solvents

    Interest of Pet Imaging in Multiple Myeloma

    Get PDF
    The interest of 18Fluoro-deoxyglucose (FDG) positron emission tomography (PET) imaging in the management of patients with multiple myeloma (MM) for the workup at diagnosis and for therapeutic evaluation has recently been demonstrated. FDG-PET is a powerful imaging tool for bone lesions detection at initial diagnosis with high sensitivity and specificity values. The independent pejorative prognostic value on progression-free survival (PFS) and overall survival (OS) of baseline PET-derived parameters (presence of extra-medullary disease (EMD), number of focal bone lesions (FLs), and maximum standardized uptake values [SUVmax]) has been reported in several large independent prospective studies. During therapeutic evaluation, FDG-PET is considered as the reference imaging technique, because it can be performed much earlier than MRI which lacks specificity. Persistence of significant FDG uptake after treatment, notably before maintenance therapy, is an independent pejorative prognostic factor, especially for patients with a complete biological response. So FDG-PET and medullary flow cytometry are complementary tools for detection of minimal residual disease before maintenance therapy. However, the definition of PET metabolic complete response should be standardized. In patients with smoldering multiple myeloma, the presence of at least one hyper-metabolic lytic lesions on FDG-PET may be considered as a criterion for initiating therapy. FDG-PET is also indicated for initial staging of a solitary plasmacytoma so as to not disregard other bone or extra-medullary localizations. Development of nuclear medicine offer new perspectives for MM imaging. Recent PET tracers are willing to overcome limitations of FDG. (11)C-Methionine, which uptake reflects the increased protein synthesis of malignant cells seems to correlate well with bone marrow infiltration. Lipid tracers, such as Choline or acetate, and some peptide tracers, such as (68) Ga-Pentixafor, that targets CXCR4 (chemokine receptor-4, which is often expressed with high density by myeloma cells), are other promising PET ligands. 18F-fludarabine and immuno-PET targeting CD138 and CD38 also showed promising results in preclinical models

    Toward a chemical reanalysis in a coupled chemistry‐climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition

    Get PDF
    We examine in detail a 1 year global reanalysis of carbon monoxide (CO) that is based on joint assimilation of conventional meteorological observations and Measurement of Pollution in The Troposphere (MOPITT) multispectral CO retrievals in the Community Earth System Model (CESM). Our focus is to assess the impact to the chemical system when CO distribution is constrained in a coupled full chemistry-climate model like CESM. To do this, we first evaluate the joint reanalysis (MOPITT Reanalysis) against four sets of independent observations and compare its performance against a reanalysis with no MOPITT assimilation (Control Run). We then investigate the CO burden and chemical response with the aid of tagged sectoral CO tracers. We estimate the total tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371 ± 12% Tg for MOPITT Reanalysis and 291 ± 9% Tg for Control Run. Our multispecies analysis of this difference suggests that (a) direct emissions of CO and hydrocarbons are too low in the inventory used in this study and (b) chemical oxidation, transport, and deposition processes are not accurately and consistently represented in the model. Increases in CO led to net reduction of OH and subsequent longer lifetime of CH4 (Control Run: 8.7 years versus MOPITT Reanalysis: 9.3 years). Yet at the same time, this increase led to 5-10% enhancement of Northern Hemisphere O3 and overall photochemical activity via HOx recycling. Such nonlinear effects further complicate the attribution to uncertainties in direct emissions alone. This has implications to chemistry-climate modeling and inversion studies of longer-lived species

    Um mundo novo no Atlântico: marinheiros e ritos de passagem na linha do equador, séculos XV-XX

    Full text link

    Imaging Lymphoma

    No full text
    LDM-TEPInternational audienc

    Myélome multiple Imagerie préclinique [18F]Fludarabine vs [18F]FDG

    No full text
    LDM-TEPNational audienc

    Réunion Club Radiopharmaceutique

    No full text
    LDM-TEPNational audienc

    A PET radiopharmaceutical development from bench to bedside

    No full text
    LDM-TEPInternational audienc
    corecore