49 research outputs found

    Testing the efficacy of the glacial buzzsaw: insights from the Sredinny Mountains, Kamchatka

    Get PDF
    Peak altitudes, hypsometry, geology, and former equilibrium-line altitudes (ELAs) are analysed across the Sredinny Mountains (Kamchatka). Overall, evidence is found to suggest that the glacial buzzsaw has operated to shape the topography of this mountain range, but the strength of this signature is not spatially uniform. In the southern sector of the mountains, we see evidence that an efficient glacial buzzsaw has acted to impose constraints upon topography, limiting peak altitudes, and concentrating land-surface area (hypsometric maxima) close to palaeo-ELAs. By contrast, in the northern sector of the mountains, a number of peaks rise high above the surrounding topography, and land-surface area is concentrated well below palaeo-ELAs. This deviation from a classic 'buzzsaw signature', in the northern sector of the mountains, is considered to reflect volcanic construction during the Quaternary, resulting in a series of high altitude peaks, combined with the action of dynamic glaciers, acting to skew basin topography toward low altitudes, well below palaeo-ELAs. These glaciers are considered to have been particularly dynamic because of their off-shore termination, their proximity to moisture-bearing air masses from the North Pacific, and because accumulation was supplemented by snow and ice avalanching from local high altitude peaks. Overall, the data suggest that the buzzsaw remains a valid mechanism to generally explain landscape evolution in mountain regions, but its signature is significantly weakened in mountain basins that experience both volcanic construction and climatic conditions favouring dynamic glaciation. © 2013 Elsevier B.V

    Understanding controls on cirque floor altitudes: insights from Kamchatka

    Get PDF
    © 2015 Elsevier B.V. Glacial cirques reflect former regions of glacier initiation, and are therefore used as indicators of past climate. One specific way in which palaeoclimatic information is obtained from cirques is by analysing their elevations, on the assumption that cirque floor altitudes are a proxy for climatically controlled equilibrium-line altitudes (ELAs) during former periods of small scale (cirque-type) glaciation. However, specific controls on cirque altitudes are rarely assessed, and the validity of using cirque floor altitudes as a source of palaeoclimatic information remains open to question. In order to address this, here we analyse the distribution of 3520 ice-free cirques on the Kamchatka Peninsula (eastern Russia), and assess various controls on their floor altitudes. In addition, we analyse controls on the mid-altitudes of 503 modern glaciers, currently identifiable on the peninsula, and make comparisons with the cirque altitude data. The main study findings are that cirque floor altitudes increase steeply inland from the Pacific, suggesting that moisture availability (i.e., proximity to the coastline) played a key role in regulating the altitudes at which former (cirque-forming) glaciers were able to initiate. Other factors, such as latitude, aspect, topography, geology, and neo-tectonics seem to have played a limited (but not insignificant) role in regulating cirque floor altitudes, though south-facing cirques are typically higher than their north-facing equivalents, potentially reflecting the impact of prevailing wind directions (from the SSE) and/or variations in solar radiation on the altitudes at which former glaciers were able to initiate. Trends in glacier and cirque altitudes across the peninsula are typically comparable (i.e., values typically rise from both the north and south, inland from the Pacific coastline, and where glaciers/cirques are south-facing), yet the relationship with latitude is stronger for modern glaciers, and the relationship with distance to the coastline (and to a lesser degree with aspect) is notably weaker. These differences suggest that former glacier initiation (leading to cirque formation) was largely regulated by moisture availability (during winter months) and the control this exerted on accumulation; whilst the survival of modern glaciers is also strongly regulated by the variety of climatic and non-climatic factors that control ablation. As a result, relationships between modern glacier mid-altitudes and peninsula-wide climatic trends are more difficult to identify than when cirque floor altitudes are considered (i.e., cirque-forming glaciers were likely in climatic equilibrium, whereas modern glaciers may not be)

    Younger Dryas glaciers and climate in the Mourne Mountains, Northern Ireland

    Get PDF
    Here, we present evidence to suggest that the Mourne Mountains, Northern Ireland, were last occupied by glaciers during the Younger Dryas Stadial. The margins of these glaciers are marked by moraines, chronologically constrained to the Younger Dryas by Schmidt hammer exposure dating. Reconstructions indicate that these glaciers had equilibrium-line altitudes (ELAs) ranging from 356 ± 33 m (a.s.l.) to 570 ± 9 m (a.s.l.), with a mean of 475 ± 36 m (a.s.l.). ELAs rise from west to east, probably reflecting the contribution of windblown snow and ice to the accumulation of Younger Dryas glaciers in the western Mournes. Taking this into consideration, a mean ‘climatic’ ELA of 529 ± 4 m (a.s.l.) is calculated for the mountains as a whole. Assuming a mean annual sea level air temperature of −8 °C, and an annual temperature range of 34 °C, degree-day modelling suggests that during the Younger Dryas, accumulation at the ‘climatic’ ELA of glaciers in the Mournes was 846–990 mm a−1. This suggests increased aridity, relative to present, and is consistent with other parts of NW Europe, where reduced precipitation alongside notable cooling is thought to reflect increased North Atlantic sea ice extent during the Younger Dryas.</p

    The (mis)conception of average Quaternary conditions

    Get PDF
    Abstract The concept of Quaternary average conditions has gained popularity over the past few decades, especially with studies of long-term landscape evolution. In this paper, we critically assess this concept by analyzing the marine isotope record ((LR04 δ18O stack) relative to the Quaternary. This shows that the frequency and amplitude of climate glacial-interglacial cycles are not constant throughout the Quaternary, with a clear change during the Middle Pleistocene Transition (MPT), and that many minor oscillations exist within each cycle. For this reason, the identification of pre- and post-MPT most-frequent and, cumulatively, longest-lasting (rather than average) conditions is recommended. The most-frequent pre-MPT δ18O value of 3.725 ± 0.025‰ last occurred during 11.31–11.47 ka, while the most-frequent post-MPT δ18O value of 4.475 ± 0.025‰ last occurred during 14.81–15.04 ka. However, many other δ18O values were almost as frequent throughout the Quaternary and we present geomorphological reasons as to why it is unlikely that the present-day landscape reflects Quaternary average or, indeed, most-frequent conditions. Collectively, our results indicate that extreme caution should be taken when attempting to infer long-term landscape evolution processes (including the buzzsaw hypothesis) based on average Quaternary conditions

    Morphometric analysis of cirques on the Iberian Peninsula provides insights into climate during past glaciations

    Get PDF
    We present the first comprehensive geodatabase of glacial cirques on the Iberian Peninsula, excluding the Pyrenees. A total of 1519 cirques were mapped using Google Earth, guided by published literature. Cirque morphometry was retrieved using the ACME GIS tool. Cirques on the Iberian Peninsula are mostly located in the Cantabrian Range, with smaller populations in the Iberian, Central and Betic ranges. Cirque lowest point elevation increases from N to S and W to E, following the glacier equilibrium-line altitude during the local Last Glacial Maximum. Cirque location, orientation, shape and size suggest they developed during marginal glaciations, except in certain subregions of the Cantabrian Range. Cirque location and orientation indicate that during cirque development atmospheric circulation was similar to present

    Climatic controls on the equilibrium-line altitudes of Scandinavian cirque glaciers

    Get PDF
    The equilibrium-line altitudes (ELAs) of reconstructed palaeoglaciers have been widely used to assess palaeoclimatic conditions, yet this concept has rarely been tested using modern glaciers. To address this shortcoming, correlations between the ELAs of 513 modern cirque glaciers and present day climatic and topographic variables across Scandinavia, as well as regional trends in ELA and climate, are analysed. ELAs are calculated using the Area-Altitude-Balance-Ratio method, with a ratio of 1.5 ± 0.4. Results indicate that glacier ELAs are strongly correlated with distance from the coast. This reflects the present-day precipitation pattern of the region (characterised by high precipitation near the sea) and demonstrates a climate dominated by a maritime-continental transition. Temperature explains differences in glacier ELA regional trends as well as ELA changes with latitude. Following standard meteorological convention, Scandinavia is divided into two macro-climate regions and analyses are run within the macro-regions as well as the complete dataset. The strength of correlations between ELA and precipitation increases when the study is divided into northern and southern macro-regions. These results test long held assumptions about relationships between climate and cirque glacier ELA, which is of particular relevance to palaeoclimatic studies based on the reconstruction of former cirque glaciers

    Volcanic impacts on modern glaciers: a global synthesis

    Get PDF
    Volcanic activity can have a notable impact on glacier behaviour (dimensions and dynamics). This is evident from the palaeo-record, but is often difficult to observe for modern glaciers. However, documenting and, if possible, quantifying volcanic impacts on modern glaciers is important if we are to predict their future behaviour (including crucial ice masses such as the West Antarctic Ice Sheet) and to monitor and mitigate glacio-volcanic hazards such as floods (including jökulhlaups) and lahars. This review provides an assessment of volcanic impacts on the behaviour of modern glaciers (since AD 1800) by presenting and summarising a global dataset of documented examples. The study reveals that shorter-term (days-to-months) impacts are typically destructive, while longer-term (years-to-decades) are more likely protective (e.g., limiting climatically driven ice loss). However, because these events are difficult to observe, particularly before the widespread availability of global satellite data, their frequency and importance are likely underestimated. The study also highlights that because the frequency and nature of volcano-glacier interactions may change with time (e.g., glacier retreat may lead to an increase in explosive volcanic activity), predicting their future importance is difficult. Fortunately, over coming years, continued improvements in remotely sensed data will increase the frequency, and enhance the quality, of observations of volcanic impacts on glaciers, allowing an improved understanding of their past and future operation

    Using UAV acquired photography and structure from motion techniques for studying glacier landforms: application to the glacial flutes at Isfallsglaciären

    Get PDF
    Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor-relief landforms as wind, weather, water and vegetation impact on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study

    Assessing the Use of Optical Satellite Images to Detect Volcanic Impacts on Glacier Surface Morphology

    Get PDF
    Globally, about 250 Holocene volcanoes are either glacier-clad or have glaciers in close proximity. Interactions between volcanoes and glaciers are therefore common, and some of the most deadly (e.g., Nevado del Ruiz, 1985) and most costly (e.g., Eyjafjallajökull, 2010) eruptions of recent years were associated with glaciovolcanism. An improved understanding of volcano-glacier interactions is therefore of both global scientific and societal importance. This study investigates the potential of using optical satellite images to detect volcanic impacts on glaciers, with a view to utilise detected changes in glacier surface morphology to improve glacier-clad volcano monitoring and eruption forecasting. Roughly 1400 optical satellite images are investigated from key, well-documented eruptions around the globe during the satellite remote sensing era (i.e., 1972 to present). The most common observable volcanic impact on glacier morphology (for both thick and thin ice-masses) is the formation of ice cauldrons and openings, often associated with concentric crevassing. Other observable volcanic impacts include ice bulging and fracturing due to subglacial dome growth; localized crevassing adjacent to supraglacial lava flows; widespread glacier crevassing, presumably, due to meltwater-triggered glacier acceleration and advance. The main limitation of using optical satellite images to investigate changes in glacier morphology is the availability of cloud- and eruption-plume-free scenes of sufficient spatial- and temporal resolution. Therefore, for optimal monitoring and eruption prediction at glacier-clad volcanoes, optical satellite images are best used in combination with other sources, including SAR satellite data, aerial images, ground-based observations and satellite-derived products (e.g., DEMs)

    Provenance and depositional variability of the Thin Mud Facies in the lower Ganges-Brahmaputra delta,West Bengal Sundarbans, India

    Get PDF
    The Sundarbans is one of the largest coastal wetland sites in the world and covers an area of approximately one million hectares of the western delta of the Ganges and Brahmaputra (G-B) rivers (located across Bangladesh and India). Since the late Holocene, the western delta has not been directly fluvially sourced, due to the Ganges shift to the east (present-day Bangladesh). The depositional facies (Thin Mud Facies) of the late-Holocene abandoned western region (The Sundarbans) is derived from dominant estuary-tidal dynamics, however the provenance of the associated TMF sedimentation in this far western zone (Indian Sundarbans per se) is as yet equivocal. In this study, sediment cores from the Indian Sundarbans (Saptamukhi-Thakuran estuary) were closely examined for grain-size distributions (GSDs), mineralogy through X-ray diffraction (XRD), and geochemistry with X-ray fluorescence (XRF). The TMF in the West Bengal Sundarbans has been determined to show intensively weathered, terrestrial sediment, derived principally from the Ganges Alluvial Plain (GAP). There is a predominance of quartz, mica and clay minerals, with quartz interpreted as a product of low-relief tropical weathering sourced via the G-B Rivers draining the Himalayas. Lithofacies interpreted through GSD analysis of the TMF is indicative of a muddy tidal flat environment with aggradation and a general fining-up trend between the adjacent estuaries. The sediment provenance indicates a continuing G-B sediment source, which moves westward along the Bay of Bengal, from the active delta front and is then reworked over the far-western abandoned delta by tidal–estuarine forcing
    corecore