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ABSTRACT 

The Sundarbans is one of the largest coastal wetland sites in the world and covers an 

area of approximately one million hectares of the western delta of the Ganges and 

Brahmaputra (G-B) rivers (located across Bangladesh and India). Since the late 

Holocene, the western delta has not been directly fluvially sourced, due to the 

Ganges shift to the east (present-day Bangladesh). The depositional facies (Thin Mud 
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Facies) of the late-Holocene abandoned western region (The Sundarbans) is derived 

from dominant estuary-tidal dynamics, however the provenance of the associated 

TMF sedimentation in this far western zone (Indian Sundarbans per se) is as yet 

equivocal. In this study, sediment cores from the Indian Sundarbans (Saptamukhi-

Thakuran estuary) were closely examined for grain-size distributions (GSDs), 

mineralogy through X-ray diffraction (XRD), and geochemistry with X-ray 

fluorescence (XRF). The TMF in the West Bengal Sundarbans has been determined 

to show intensively weathered, terrestrial sediment, derived principally from the 

Ganges Alluvial Plain (GAP). There is a predominance of quartz, mica and clay 

minerals, with quartz interpreted as a product of low-relief tropical weathering 

sourced via the G-B Rivers draining the Himalayas. Lithofacies interpreted through 

GSD analysis of the TMF is indicative of a muddy tidal flat environment with 

aggradation and a general fining-up trend between the adjacent estuaries. The 

sediment provenance indicates a continuing G-B sediment source, which moves 

westward along the Bay of Bengal, from the active delta front and is then reworked 

over the far-western abandoned delta by tidal–estuarine forcing. 
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1. INTRODUCTION 

The Indian Sundarbans comprises just over 400,000 hectares of mangrove land cover 

in the western sector of the Ganges-Brahmaputra (G-B) delta, and is cross-cut by a 

number of approximately north-south estuarine channels; the Mooriganga, 

Saptamukhi, Thakuran, Matla, Bidya, Gosaba, and Haribhanga (Fig. 1). The overall 

morphology of the far-western G-B delta reflects that of a tide-dominated system. 

Depositionally it falls on the extreme of a west-east continuum of tidal, mixed tidal-

fluvial, and purely fluvial in the contemporary G-B river mouth estuary (Rogers et 

al., 2013). The eastern sector of the G-B delta comprises the fluvially dominated 

system, where fluvially-driven shoreline progradation occurred following the joining 

of the Ganges and Brahmaputra Rivers (Allison, 1998a), while the older abandoned 

part of the delta, in the west, comprises the non-fluvially dominated system (no 

longer directly linked fluvially to the G-B River sources) (Rogers et al., 2013). This 

western part of the delta, which underlies the present day Indian Sundarbans, was 

fluvially abandoned prior to c. 5000 cal yr BP, as the Ganges River migrated 

eastward towards its present position (Goodbred and Kuehl, 2000a; Sarkar et al., 

2009). Over the last 4,000 yrs, the West Bengal Sundarbans area is thought to be 

estuary-tidal in terms of process domination, leading to the deposition of what is 

termed the ―Thin Mud Facies‖ (TMF: Goodbred and Kuehl, 2000a). The origin of 

TMF sediments in what is now the Bangladesh Sundarbans, is considered to be 

related to reworking of G-B sourced muds from the delta front (Allison et al., 2003; 

Rogers et al., 2013), but a similar provenance for the Indian Sundarbans TMF has 

still to be substantiated. The western extent of the G-B delta is now considered to be 

undergoing net delta front erosion as a result of eustatic sea-level rise and tectonic 

subsidence (Allison, 1998b; Allison et al., 2003) and, by inference, is seen as one 
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possible source for the extreme western TMF.  This paper aims to establish 

sedimentary depositional processes and provenance in the West Bengal Sundarbans 

during the last 4-5,000 yrs, and addresses the potential sources of sediment in the far 

―abandoned‖ western sector of the G-B delta system, by analysing sedimentary cores 

from three deltaic islands in the far-western Sundarbans; Lothian, Dhanchi, and 

Gplot, shown in Fig. 1(ii). 

 

2. LATE-PLEISTOCENE AND HOLOCENE SEDIMENTARY FACIES OF 

THE LOWER GANGES-BRAHMAPUTRA DELTA 

2.1. Background 

The majority of studies on the Quaternary stratigraphy and sedimentary facies of the 

Ganges-Brahmaputra (G-B) system have determined the appropriate broad-scale 

sedimentary facies models (e.g., Morgan and McIntire, 1959; Coleman, 1969; 

Umitsu, 1987, 1993; Kuehl et al., 1989; Johnson and Alam, 1991; Lindsay et al., 

1991; Curray, 1991; Johnson, 1994; Hait et al., 1996; Kuehl et al., 1997; Hübscher et 

al., 1998; Stanley and Hait, 2000; Goodbred and Kuehl, 2000a, 2000b; Goodbred et 

al., 2003; Allison et al., 2003; Sarkar et al., 2009). These studies show variability in 

the use of facies descriptions for the G-B delta and these tend to follow the broader 

scale late Quaternary evolution of the delta (e.g., Goodbred and Kuehl, 2000a), or 

Holocene evolution of the lower delta plain (e.g., Allison et al., 2003). In terms of the 

entire G-B delta, the oldest stratigraphic units are dated from 18,000 cal yr BP and 

consist of coarse channel sands, indicative of lowstand alluvial valleys and oxidized 

laterites associated with subaerial weather exposure (Goodbred et al., 2003). Fining-

up of the channel sands and a silty mud unit with wood and marine fossils is 

understood to have taken place from 10,000–11,000 cal yr BP, and has been 
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interpreted as a mangrove-colonized coastal plain (Goodbred et al., 2003). From c. 

11,000–3,000 cal yr BP, muddy fluvial sands of the mid-Holocene prograding river 

channels overlay these coastal facies, with the upper delta stratigraphy consisting of 

single or multiple fining-up sand sequences that are locally interspersed with silty 

floodplain deposits. The late Quaternary stratigraphic facies of the G-B delta have 

been broken down into six principal groups by Goodbred and Kuehl (2000a): 

Oxidised Facies (OF), Sand Facies (SF), Lower Delta Mud Facies (LDMF), Muddy 

Sand Facies (MSF), Sylhet Mud Facies (SMF), and Thin Mud Facies (TMF). This 

description of stratigraphic facies succession has been further developed by Allison 

et al. (2003) to look specifically at the lower delta plain stratigraphy. The lower delta 

plain stratigraphy has been further divided into five units: Muddy Sand (MS), 

Mottled Mud (MM), Interbedded Mud (IM), Laminated Sand (LS), and Peaty Mud 

(PM) (Allison et al., 2003). The fining up in grain size from the MS to IM/MM, 

located west of the active G-B river mouths is attributed to either older phases or 

multiple phases of progradation of the lower delta plain (Allison et al., 2003). 

Subaqueous shoal sedimentation has been linked to the MSF as a result of the 

reduced mud content and cross-stratification associated with bedload transport 

(Allison et al., 2003). Current energies have been found to diminish in the preserved 

upward section of the core sections examined by Allison et al. (2003) which allow 

for enhanced deposition of mud, illustrating this upward fining of the sequences. 

 

2.2. Thin Mud Facies of the Ganges-Brahmaputra delta 

Goodbred and Kuehl (2000a) describe the TMF as representing the cap unit of 

coarser underlying facies units throughout the Bengal Basin, consisting of overbank 

deposits of the modern and recent floodplain system. Deposition of this facies unit 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

6 

 

took place from approximately 5000 cal yr BP to present, and is present within a 

depth of 5-7 m to the surface of the G-B delta. This unit is generally poorly preserved 

in the deeper stratigraphy indicative of rapid channel migration and frequent avulsion 

and subsequent removal. As outlined by Allison et al. (2003) the TMF and surface 

sediments of the lower delta plain tend to be very homogenous silts to clayey silts 

with the Sundarbans in the west presenting slightly finer material on average in 

comparison to that of the eastern delta. The lithostratigraphy of the near surface 

sediments appears to be homogenous with a network of mangrove roots at a depth of 

3–4 m below the surface. Bed thicknesses tend to range from 3-10 cm, with a series 

of alternating layers of clay dominant and clay-deficient silts. 

The TMF is understood to be found in floodplain environments and absent 

near active fluvial channels and is interpreted as abandoned floodplain overbank 

deposits (Goodbred and Kuehl, 2000a). In contrast to Goodbred and Kuehl‘s 

observations of the TMF as a product of abandoned floodplain and overbank 

deposits, Allison et al. (2003) regard the source of TMF sediments as reworked 

Bengal Bay nearshore muds, transported into the delta plain by a mixture of cyclones 

and constant tidal activity up the abandoned river channels, which post 5,000 yrs ago 

have been transformed into tidal-dominant estuaries. 

The central criticism with these interpretations of lithofacies is that grain-size 

distributions (GSDs) represent a mixture of sediment populations, corresponding to 

different production and/or transport mechanisms (cf., Weltje and Prins, 2003; 2007). 

In the conceptual model of spatio-temporal grain-size variation developed by Weltje 

and Prins (2003; 2007), each size fraction corresponds to a characteristic process, 

termed a dynamic population (DP). DPs may be defined in probabilistic terms as an 

assemblage of grains that are likely to occur together, as they respond to dynamics of 
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sediment production and transport in a similar manner (Weltje and Prins, 2003). DPs 

provide a link between GSD variation and palaeoenvironmental reconstructions, as 

they can be coupled with the physical laws that govern sediment production and 

transport (Weltje and Prins, 2003). Tying this understanding of GSD and physical 

laws of production and transport of sediments, means that when a sediment is being 

eroded, the probability of any grain going into transport increases with diminishing 

grain-size (McLaren and Bowles, 1985). Here we present the first discussion of the 

production and transport of sediment within the G-B Delta that more fully 

encompasses the various processes contributing to grain-size variability in TMF 

lithofacies. For the purposes of this study, analysis is focussed primarily on the TMF 

unit as described by Goodbred and Kuehl (2000a). 

 

2.3. Mineralogy and geochemistry of the Ganges-Brahmaputra Rivers 

Both the Ganges and Brahmaputra rivers drain lithologically complex basins and 

lack a dominant lithology (Small et al., 2009). The drainage basin of the Ganges 

River is composed of highly weathered sediments and volcanics with clay dominance 

(Coleman, 1969; Lupker et al., 2012; 2013; Goodbred et al., 2014). Detrital grains of 

higher quartz and lower feldspars contents in surface sediments of the Bengal Basin 

(BB) are indicative of a source zone of low-relief tropical weathering (Potter, 1978; 

Datta and Subramanian, 1997). The lack of BB carbonate minerals is attributed to 

both weathering and the settling effects of detrital carbonates during transport in the 

upper reaches of the G-B Rivers (Datta and Subramanian, 1997). 

The Ganges catchment streams draining the Himalaya have been well studied 

(e.g., Galy and France-Lanord, 1999; Dalai et al., 2002; Bickle et al., 2003, 

Chakrapani, 2005; Garzanti et al., 2010, 2011; Fontorbe et al., 2013; Frings et al. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

8 

 

2015) and are characterised by sediment supply from rapid physical and chemical 

weathering. Carbonate weathering is dominant with minor contributions from silicate 

weathering and hot springs (Frings et al., 2015). Differences in chemistries of 

headwaters in the southern tributaries of the Ganges compared to other streams 

draining the Himalaya have found cation compositions dominated by Na
+
 

(Rengarajan et al., 2009) instead of Ca
2+

 (Frings et al., 2015). 

Detrital micas dominate the clay fraction (∼80%) in Himalayan streams of 

the Ganges with authigenic clays more dominant in the alluvial plain (Chakrapani et 

al., 1995). The alluvial plain is the dominant zone of weathering and clay formation 

in the G-B Rivers with predominance of illite and kaolinite (Sarin et al., 1989; 

Chakrapani et al., 1995; Datta and Subramanian, 1997; Heroy et al., 2003; Frings et 

al., 2015). 

The key distinction between the Ganges and Brahmaputra is silica enrichment 

in the sand fraction of Ganges sediment—attributable to chemical weathering of 

feldspar (Singh et al., 2005a, b; Bhuiyan et al., 2011). Fluvial transport is considered 

a major source of mineral sorting, controlling the geochemistry of weathering 

products (Singh et al., 2005a). Sediments in the upper catchment of the Ganges, the 

Ganges Alluvial Plain (GAP), have undergone chemical weathering of incipient to 

moderate intensity, with a first-stage of weathering in the Himalayas, followed by a 

second stage of weathering in the GAP (Singh et al. (2005a). The clay mineralogy 

and chemical index of alteration (CIA) (Nesbitt and Young, 1982) of sediments in 

the Brahmaputra show that weathering is generally less intense than in the Ganges 

and GAP (Singh et al., 2005b; Bhuiyan et al., 2011). This lower weathering intensity 

is attributed to higher runoff rates with greater physical erosion within the 

Brahmaputra. Heavy rainfall occurs during the SW and NE monsoons in the eastern 
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Himalaya and, as a result, there is increased runoff, which limits the potential for 

alteration of sediments through chemical weathering (Singh et al., 2005b). 

Rogers et al. (2013) examined present-day sediment composition through 

sediment traps and radioisotope geochemistry, particularly through inventories of 

7
Be (t1/2 = 53.3 days; 477.7 KeV), 

210
Pb (t1/2 = 22.3 years; 46.5 KeV), 

234
Th (t1/2 = 

24.1 days; 63.3 KeV) and 
137

Cs (t1/2 = 30.1 years; 661 KeV). The results from the 

inventory of 
7
Be have shown that atmospheric deposition cannot alone be responsible 

for accumulation of 
7
Be in sediments (Rogers et al., 2013). It has been proposed that 

7
Be can only be added with the input of new sediment (Rogers et al., 2013). These 

findings from Rogers et al. (2013) indicate that there is rapid transport of G-B 

sediments to the inner BB shelf, sourced from sediment eroded from the surface of 

the G–B fluvial catchment. While on the coastal shelf, the river sediment plume is 

dispersed westward by prevailing currents. This sediment plume remains in 

suspension and available for transport onshore through a series of tidal creeks and 

onto the subaerial delta plain (Kuehl et al., 1989; Barua et al., 1994; Rogers et al., 

2013). 

In a previous study, Flood et al. (2016), the joint geochemical and grain size 

composition from the West Bengal Sundarbans was modelled using compositional 

data analysis (CoDa) and partial least squares (PLS) regression. It was found that 

there was a strong relationship between zirconium (Zr) and coarse grained sediment, 

with coarse clay and medium/coarse-silt found to be related to rubidium (Rb). Fine-

grained sediment provenance was found to relate to Rb and K, with coarse grained 

sediment provenance linked to Zr. Calcium was interpreted to relate to external 

environmental controls (e.g., sea-level/ tidal inundation) as Ca is generally only 

present in liquid form in the marine environment. There was a negative covariance of 
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Ca with Zr, Ti, K, and Rb with decline in Ca and concomitant increases in Zr, Ti, K, 

and Rb interpreted as terrestrial derived sediment flux with diminished marine or 

carbonate deposition (Flood et al., 2016). 

3. METHODOLOGY 

3.1. Fieldwork 

Coring was carried out using a motor driven percussion coring device with latitude, 

longitude and elevation recorded with a differential GPS and reported as above mean 

sea-level (amsl). Coring was carried out at Lothian (21° 42' 0.9252" N, 88° 18' 

46.0188" E; 4.539 amsl), Gplot (21° 41' 24.3456" N, 88° 24' 9.4788" E; 2.532 amsl), 

and Dhanchi (21° 41' 57.7536" N, 88° 26' 1.896" E; 5.894 amsl) in November 2010 

(sites shown in Fig. 1(ii)). These cores were all taken through the TMF sequence, 

varying between 5-7 m overall depth, before moving into the underlying sand facies 

of the fluviatile dominated delta. In total, 202 samples (8 cm apart) were collected 

from the three cores (Lothian, n=83, Gplot, n=46, and Dhanchi, n=73). Samples were 

divided into three groups for laboratory analysis (i.e., laser granulometry, XRD, and 

XRF). 

 

3.2. Analysis of grain-size distributions 

GSDs were analysed following Flood et al. (2015; 2016) using a MalvernMastersizer 

2000 instrument. Data were aggregated into quarter phi intervals (φ scale) over the 

range of 0.02 – 2000 μm. Analysis of GSD composition followed the methodology 

developed recently by Flood et al. (2015) through compositional data analysis 

(CoDa) and multivariate statistics through principal components analysis (PCA) and 

cluster analyses (CA). In order to assess the textural characteristics of sediments 

from the Sundarbans, this study has adopted the approaches advocated by Flood et al. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

11 

 

(2015), whereby the GSD data are log-ratio transformed. A description of these 

statistical procedures are outlined in Flood et al. (2015; 2016). PCA and CA results 

from Lothian Island GSDs have been published previously (Flood et al., 2015) and 

will not be presented again in this study. 

Centred log-ratio (clr) transformation was carried out on the GSDs prior to 

multivariate statistical analysis using the ‗compositions‘ package for the R statistical 

environment (R Development Core Team, 2011). R was downloaded freely at 

http://www.r-project.org for Windows (current version 3.4.1, ~ 62 MB). PCA, 

hierarchical cluster and k-means cluster analyses were carried out on the log-

transformed GSDs using the statistical package IBM® SPSS® Statistics version 

19.0. 

 

3.3. X-ray diffraction and mineralogical analysis 

Selected core samples were lightly homogenised to an equal grain size fraction (<75 

μm fraction) using an agate mortar and pestle in order to determine sediment 

mineralogy. X-ray powder diffraction (XRPD) was performed using a 3 kW 

PANalytical X‘pert Pro Powder Diffractometer (Almelo, The Netherlands) θ/θ 

goniometer with a CuKα1 electrode producing monochromatic radiation (λ = 1.54060 

Å, 40 kV, 40 mA) between 3 and 63°2θ with a step size of 0.02° using an 

X‘Celerator multichannel detector.  

Qualitative and quantitative analyses of XRD data was performed using 

X‘Pert HighScore Plus software, Version 2.2b (2006) with mineral identification 

performed with the JCPDS PDF-2 database from the International Centre for 

Diffraction Data® (ICDD, 2002). Multivariate statistical methods were employed to 

detect, describe, and classify patterns within the mineralogical data. PCA and 
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hierarchical cluster analysis (HCA) was carried out to allow samples to be 

agglomerated into representative mineralogical groups.  

The Rietveld refinement method (Rietveld, 1967; 1969) of quantitative 

analysis was performed on diffraction samples originating from the cluster centroids 

most representative of the cluster groups. The Rietveld refinement method involves 

fitting an observed diffraction pattern with a synthetic pattern, which is a sum of 

patterns calculated for each phase in the sample (Snyder and Bish, 1989; Bish, 1994; 

Hillier, 2000). XRD was repeated on the cluster representative samples (between 3 

and 65° 2θ with a step size of 0.02°) with further qualitative analysis. The output 

parameters from the fitting procedure are presented as a set of agreement indices 

following the refinement. 

 

3.4. X-ray fluorescence and geochemistry 

Data acquisition using ED-XRF was undertaken following the approach outlined by 

Flood et al. (2016), using a Bruker S1 TURBO SD portable X-ray fluorescence 

(PXRF) spectrometer (Bruker Corporation, Massachusetts, USA) consisting of a 10 

mm X-Flash® SDD Peltier-cooled detector with a 4-W X-ray tube with an Ag target 

and a maximum voltage of 40 kV. Analysis was performed on discrete samples 

collected from the Lothian, Gplot, and Dhanchi Island cores. These samples were 

each measured for 30 seconds, with a set of 22 international geochemical reference 

standards (see supplementary appendix) measured for 120 s, this was performed for 

instrument calibration purposes. The 10 elements that are generally listed as oxides 

in the major element chemical analysis, Al, Si, Ti, Fe, Mn, Mg, Ca, Na, K, and P 

were determined in all samples. Trace elements Ba, V, Cr, Co, Ni, Cu, Zn, Rb, and 

Zr were also analysed. The precision and accuracy of the preparation and the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

13 

 

instrumental performance of the PXRF was checked using the international reference 

samples and a summary of these is provided by Flood et al. (2016). No discrepancies 

were found between the analytical data obtained and the consensus data with the 

international reference samples.  

 

3.5. Major and trace element interpretation 

Sundarban sediment maturity classification was obtained using, the Na2O/K2O ratio 

index of chemical maturity (Pettijohn et al., 1972), and the Fe2O3/Al2O3 ratio for 

mineral stability (Herron, 1988). These were plotted against SiO2/Al2O3 ratio as an 

assessment of quartz and clay mineral abundance (Potter, 1978). A bivariate plot of 

major element geochemistry has also been used to infer tectonic provenance, using 

K2O/Na2O plotted against SiO2 (Roser and Korsch, 1986). 

In order to quantify weathering intensity the use of the CIA as proposed by 

Nesbitt and Young (1982) was applied in this study, where: 

 

    [     (         
          )⁄ ]         Eq. 1. 

 

Taking the molecular proportions, and with CaO
*
 representing CaO in silicates only 

(Nesbitt and Young, 1989; Nesbitt et al., 1996). In this approach, a CIA value of 100 

would suggest intense chemical weathering along with complete removal of all the 

alkali and alkaline earth elements (Singh et al., 2005a). CIA values of 45–55 indicate 

almost no weathering (Singh et al., 2005a). CIA values for average upper continental 

crust (UCC) and unaltered granite rocks are at 47 and 50, respectively (Singh et al., 

2005a). A correction for CaO is required in order to account for the presence of Ca in 

carbonates and phosphates and this is generally conducted by calculating corrections 
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from measured CO2 and P2O5 contents (Singh et al., 2005a). Where these data are 

unavailable, approximate corrections can be made by assuming reasonable Ca/Na 

ratios in silicate material (Singh et al., 2005a). In this study, CaO content was 

corrected for phosphate using available P2O5, where if the remaining number of 

moles is less than that of Na2O, this CaO value was adopted (cf., Singh et al., 2005a). 

The rationale for using CIA is that it offers a quantitative measure of feldspar 

weathering by relating Al, which is enriched in the weathering residues, to Na, Ca, 

and K, which in principal should be removed during plagioclase and K-feldspar 

weathering (Nesbitt and Young, 1982; Sheldon and Tabor, 2009; Buggle et al., 

2011). As clay content increases there should also be an increase in Al, whereas Ca, 

K, and Na should decrease, leading to higher CIA values (Sheldon and Tabor, 2009). 

The identification and evaluation of major element mobility within the 

Sundarbans during weathering was carried out using elemental ratios calculated with 

respect to the least mobile element Al, which is believed to stay in the weathered 

material (cf., Singh et al., 2005a). The ratio of the content of element D and Al2O3 in 

the Sundarbans sediments was divided by the ratio of the same element content in 

UCC in the following element ratio: 

              ( )  
 
     (                    )
⁄

 
     (   )
⁄

     Eq. 2. 

 

This ratio refers to the relative enrichment or depletion of the element with a value of 

>1 indicating enrichment, <1 indicating depletion, and = 1, indicating no change in 

the relative abundance. 

As weathering proceeds, the mobilisation, fractionation, and redistribution of 

major and trace elements takes place, and as a result, weathering is impacted by 

dissolution and formation of primary minerals and secondary minerals, respectively 
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(Chesworth et al., 1981; Nesbitt et al., 1980; Fritz and Mohr, 1984). Along with 

these, redox processes, transportation, co-precipitation and ion exchange with 

various minerals may take place (Chesworth et al., 1981; Nesbitt et al., 1980; Fritz 

and Mohr, 1984). Since titanium is a relatively immobile element during weathering 

(Nesbitt, 1979), it has been used previously by Singh et al. (2005a) for the 

calculation of chemical mobility of major and trace elements. Following this 

approach, the percentage increase and decrease of a selected element, element D, was 

calculated in the following manner: 

 

                  ( )  {(      )      (      )   ⁄   }   Eq. 3. 

 

Relative to TiO2, percentage change of elements were plotted against the CIA and 

provide a basis for assessing the increase or decrease in chemical mobility during 

chemical weathering (cf., Singh et al., 2005a). 

These data are examined with reference to published data from Singh et al. 

(2005a) and Bhuiyan et al. (2011), for the GAP in India, and Brahmaputra–Jamuna 

River in Bangladesh, respectively. Data for UCC from Taylor and McLennan (1985) 

and World Sediments from McLennan (1995) are discussed to facilitate 

interpretation of the data from this study, alongside Singh et al. (2005a) and Bhuiyan 

et al. (2011). 

 

4. RESULTS 

4.1. Multivariate statistical analysis results from Gplot and Dhanchi grain-size 

distributions: PCA and CA results 
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Figure 2 (a-c) shows the percentage (%) sand, silt, and clay composition from the 

Lothian, Gplot, and Dhanchi Island cores, respectively. The overarching grain size is 

silt which comprises ~70 – 80% of the sediment, with Gplot showing a 

proportionally higher sand content.  

The results from the multivariate statistical analysis of GSDs from the Gplot 

and Dhanchi Island cores are shown in Fig. 3(a-j). Coefficients from the first and 

second principal components (PCs) from Gplot are shown in Fig. 3(a, b) with PC1 

(Fig. 3a) illustrating very coarse silt to fine-medium sand (4.00 φ–1.25 φ) and 

negative coefficients corresponding to fine clay to coarse silt fractions (12.02 φ–4.24 

φ). PC2 coefficients (Fig. 3b) show highest positive values for coarse silt and very 

coarse silt, with highest negative values for fine and medium sand. Table 1 

summarises the PCA carried out from the first four PCs (~95% of variance), with 

71% of the cumulative variance of PC1 and 14% by PC2. 

Vertical distribution of PC scores for Gplot are shown in Fig. 3(c, d) with 

PC1 (Fig. 3c) scores showing positive scores from the base of the core, at ~ 386 cm 

to a depth of ~ 230 cm. Positive scores from ~ 230 cm progress into negative scores 

up to the core surface. This succession is interpreted as dominant fining-up in the 

core, with coarse material (sand and coarse silt) dominant at the core base, then, at ~ 

200 cm, the position is reversed with the predominance of medium – fine silt and 

clay and the absence of sand and coarse silt.  

PC2 scores (Fig. 3d) reflect that within this fining-up of the sequence, 

varying degrees of silt composition make up the core with some sandy and coarse 

material interspersed throughout with negative scores in PC2 reflecting very-coarse 

silt and sand.  
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Cluster analysis (CA) through Ward‘s (1963) hierarchical cluster analysis 

(HCA) and k-means cluster analysis indicate that three groups of sedimentary facies 

effectively explain the GSD variation, with their vertical disposition depicted in Fig. 

4(a). The grain size association with each of the sedimentary facies follows: 

 Facies 1a (F1a): medium clay to medium silt; 

 Facies 2a (F2a): medium to very coarse silt with some sand, and; 

 Facies 3a (F3a): composed of very fine to very coarse sand. 

From the base of the core to a depth of 250 cm there are fluctuating trend 

between F3a and F2a. From 250 cm to 200 cm the cluster membership is mainly 

composed of F2a, with a fluctuating membership of F2a to F1a from 200 cm to 40 

cm. From 40 cm to the core surface the sequence is primarily composed of fine-to-

medium silt and clay. The fluctuating variability in cluster group association appear 

indicative of the PCA results, with F3a, and F2a composed of varying levels of sand 

and silt (coarse–medium) while F1a appears to be characteristic of fine and medium 

silt with clay composition. The vertical trend of these groups through the Gplot 

Island core indicates a fining-up sequence (Fig. 4(a)). 

Association of these sedimentary facies to PCs extracted is illustrated in Fig. 

3(e), with a biplot of PC1 and PC2. PC1 is interpreted as fining-up trend (horizontal 

axis) with PC2 of an oscillating trend between coarse and fine material. Sample 

points located in the positive quadrant for PC1 and 2 reflect very-coarse silt and fine 

sand composition that comprise F2a samples. Samples in the positive PC1 and 

negative PC2 quadrant reflect very-coarse silt with fine-medium-coarse sand with 

F3a samples in this quadrant indicative of sand near the core base. Samples in the 

negative PC1 and PC2 quadrant are composed of F1a, indicative of medium clay to 

fine silt in the upper parts of the core. A facies transition order is present, with 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

18 

 

coarser sands and coarser silts at the core base, overlain by a greater oscillating 

pattern of cluster groups from ~ 200 cm to core surface (Fig. 4(a)). The ordering and 

appearance of sedimentary facies suggests there are two distinctive broad 

stratigraphical Facies; (i) a lower sandy-silt; and (ii) an upper oscillating sequence of 

fine/medium-silt and clay, as shown in Fig. 4(a). 

Dhanchi grain-size coefficients from PC1 and PC2 are shown in Fig. 3(f,g) 

with positive coefficients from PC1 (Fig. 3f) corresponding to medium clay and very 

coarse silt (12.02 φ–6.00 φ) and negative coefficients for very coarse silt to sand 

fractions (5.01 φ– −1.00 φ). PC2 coefficients (Fig. 3g) indicate highest positive 

values are very coarse silt (5.00 φ–4.00 φ) and coarse silt (6.00 φ–5.00 φ), with high 

negative coefficients indicative of clay (7.00 φ–6.00 φ) and sand (4.00 φ– −1.00 φ). 

Table 2 is a summary of the PCA with the first four components (~99% of variance), 

with PC1 comprising ~ 86% of the cumulative variance and PC2 of 8% of 

cumulative variance. 

Fig. 3(h, i) shows the score distributions throughout the Dhanchi core for PC1 

and PC2. PC1 scores (Fig. 3h) show that from core base to ~ 300 cm depth, sediment 

is composed of very coarse silt and sand with some finer material (clay and fine silts) 

and overlain by coarser sediment from ~ 300 cm to the core surface. PC2 scores (Fig. 

3i) show fluctuating coarse sediment throughout the core, with highest positive 

scores for coarse silt and sand with finer-grained sediment between ~ 450 cm to 0 

cm, denoted by slightly negative to low scores. Results indicate that the sequence is 

composed almost entirely of various grades of silt with clay, and sand. These 

characteristics would suggest a mixture of size fractions throughout the Dhanchi 

sequence but with dominant fining-up. 
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HCA and k-means cluster analysis show three groups of sedimentary facies 

that explain GSD trend in the Dhanchi core (Fig. 4b). Grain size association with 

each of the sedimentary facies is: 

 Facies 1b (F1b): two samples, considered to be an outlier; 

 Facies 2b (F2b): two samples, considered to be an outlier; 

 Facies 3b (F3b): medium and coarse silt with clay; 

 Facies 4b (F4b): coarse silt with some sand, and; 

 Facies 5b (F5b): sand (very fine sand to very coarse sand) with silt. 

From core base to 320 cm a fluctuating trend between F5b and F4b is found, 

and from 320 cm to 60 cm cluster membership varies between F4b and F3b, with the 

top 60 cm composed of F3b and some F2b. F5b, F4b. F3b indicate varying degrees 

of silt (coarse–medium–fine) and sand, F4b and F3b comprising fine and medium silt 

with clay, with F1b of coarse silt, and F2b clay. Sand and silt fluctuations are shown 

by F5b and F4b, with F4b and F3b for coarse silt to medium and fine silt. 

Biplot analysis of sedimentary facies and PCs from the Dhanchi are shown in 

Fig. 3j. Biplot quadrants reveal that in positive PC1 and PC2, there is an overall 

coarse-silt composition. Positive PC1 and negative PC2 reflect predominantly F4b 

samples with F4b samples most negatively represented along the second principal 

component, indicative of very-coarse silt to sand, with F5b showing the transition 

from very-coarse silt and sand to very-coarse clay and medium clay. The negative 

PC1 and PC2 quadrant is composed of some F4b and F5b samples, with negative 

PC1 and positive PC2 quadrant composed mainly of F5b and F1b. 

PC1 is interpreted as a fining-up trend (horizontal axis) with PC2 composed 

of coarse-silt and sand fractions. Positions of some outliers in the F1b and F2b 

samples show the latter indicative of coarse- to very coarse-silt and former of sand 
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and clay. Cluster groups of F4b and F3b represent coarse sediment (coarse silt and 

sand), with F3b of the progression into fine material and fining-up. Facies order or 

stacking pattern is present, coarser silts and sand dominating the sequence from core 

base at 558 cm to ~ 250 cm, overlain by an oscillating trend of cluster groups ~ 250 

cm to ~ 60 cm. The oscillating trend is overlain by homogeneous, medium- and 

finer-silts with clays from ~ 60 cm to core surface (Fig. 4b). Ordering of sedimentary 

facies and appearance in core suggests there are three distinctive broad 

stratigraphical facies; (i) a lower coarse-silt and sand; (ii) a middle medium-fine 

silty-clay; and (iii) an upper medium- to very fine-silt and clay. 

 

4.2. X-ray powder diffraction: results from the Sundarbans 

Table 3 shows the most representative cluster samples with their site and depth in 

each core with data analysis outlining mineral groups within the cores. Following 

Rietveld refinement, observed and calculated spectra for cluster representative 

samples are given in supplementary data. Agreement indices for each diffractogram 

are shown in Table 4 with ‗goodness-of-fit‘ best interpreted from the residual (Rp) 

and weighted residual (Rwp) profiles. Optimum fit based on these parameters is 

generally less than 5% and 10% for Rp and Rwp, respectively. These are expected to 

be a little higher in geological material (O‘Meara 2013, pers. comm.; Speakman 

2013, pers. comm.; Pecharsky and Zavalij, 2009). 

Cluster 2 appears to have refined optimally (Rp = 5.5% and Rwp = 7.6%), and 

cluster 4 having the highest residual values (Rp = 15.3% and Rwp = 25.0%) with 

clusters 1, 3, 5, and 6 having a series of residual and weighted residual values 

between 13.1–9.3% and 9.1–6.2%, respectively. Rietveld Refinement carried out on 

the six cluster representative samples appears to show well-fitted models for the 
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observed spectra. Mineralogical composition is shown in Table 5 with a data 

summary in Table 6. 

High abundance of quartz is found in all clusters with cluster 4 and 2 having 

the highest (78.6%) and lowest (34.8%), respectively. Clinochlore was present in all 

but two clusters (2 and 5) with highest (5.5%) and lowest (0.9%) in 6 and 4, 

respectively. Muscovite was found in nearly all clusters, except cluster 4, with 

highest (50.9%) and lowest (18.8%) in cluster 2 and 1. Albite (plagioclase feldspar) 

present in all clusters with highest (13%) and lowest (4.9%) contents in cluster 5 and 

4, respectively. Microcline (alkali feldspar) was present in cluster 4 at 8.2 %. Clay 

minerals consisted of kaolinite, dickite, and possibly vermiculite at only trace 

amounts (<1.0%) detected in clusters 2 and 5 at 0.7 % and 0.4 %, respectively. 

Dickite (polymorph of kaolinite) was present in cluster 4 (4.6 %), with kaolinite in 

all cluster representative samples, with the exception of cluster 4. The highest 

(13.6%) and lowest values (6.7%) of kaolinite were in cluster 2 and 5, respectively. 

A plot of the first three principal components is shown in Fig. 5, with ~95% 

of the variance accounted by these components. PC1 is composed mainly of quartz in 

all of the samples examined (Table 5) with phyllosilicates, particularly mica (i.e., 

muscovite) and clays (i.e., clinochlore and kaolinite) illustrated by PC2. Feldspars 

(i.e., albite, microcline and Ca plagioclase) comprise PC3 with Fig. 5a showing 

cluster 5 in the negative PC1 and PC2 quadrant, potentially attributed to albite. 

Progression of scores along PC2 show predominantly clusters 3, 6, and 2, and reflect 

increasing muscovite and kaolinite composition (i.e., muscovite: 22.1%  33.6%  

50.9%; kaolinite: 6.9%  11.9%  13.6%). This trend in PC2 appears to continue 

with cluster 4, with this cluster varying more positively in PC3, interpreted as high 

microcline content. Cluster 1 appears distinct as it tends to vary negatively along 
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PC2, reflecting lower quantities of phyllosilicates and having higher albite and 

clinochlore contents, with the latter absent from cluster 5. 

The distribution of the mineral clusters from each of the Sundarbans cores is 

shown in Fig. 5(e), Lothian (i) displaying a sporadic and fluctuating trend in clusters 

2, 4 and 6 at core base to c. 500 cm, and an oscillating trend between clusters 4 and 2 

from c. 500 cm to c. 170 cm, overlain by another oscillating trend between cluster 5 

and 3. Cluster 1 is dominant in Gplot core (ii) from the core base to c. 225 cm, 

followed by an oscillating trend between 6 and clusters 2 and 3 from c. 225 cm to 

core surface. Two oscillating trends are found in the Dhanchi core (iii), at the core 

base to c. 220 cm composed of clusters 2 and 4, followed by clusters 6 and 2 from c. 

220 cm to c. 40 cm depth with a final oscillating trend from c. 110 cm to 50 cm with 

clusters 3 and 6. 

 

4.3. X-ray fluorescence: results from major and trace element geochemistry of the 

Sundarbans 

 

The bulk chemistry of the Lothian, Gplot, and Dhanchi island cores consists mainly 

of the oxides of three elements: Al, Si and, Fe. The total composition of these 

elements in Lothian, Gplot, and Dhanchi island cores is approximately 84%, 83% 

and 86%. The average SiO2/Al2O3 ratios of Lothian, Gplot, and Dhanchi are 4.1, 4.5, 

and 4.2, respectively. This is interpreted to reflect mineral composition and grain-

size variability, in which GSD is mainly silt-sized with quartz dominant in coarse-

size fractions, and clay minerals in fine grain-size fractions. Aluminosilicate minerals 

are preferentially transported as suspended load with quartz tending to be found as 

bedload (cf., Singh et al., 2005a). 
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4.3.1. Rock classification and tectonic provenance of Sundarbans sediments 

Ratios of the major elements of Al2O3/SiO2 and Fe2O3/SiO2 of the Sundarbans, along 

with data from Singh et al. (2005a) and Bhuiyan et al. (2011), were plotted with 

respect to the Himalaya and the Siwalik, following Singh et al. (2005a) (Fig. 6). The 

Himalayas tend to possess a mean chemical composition that is similar to the average 

UCC (Galy and France-Lanord, 2001). The linear relationship found with the 

Sundarbans sediments indicates a grain-size component, with the lower parts of each 

core being enriched with quartz. This is seen in Fig. 6 with the position of the 

Sundarbans samples from Lothian and Gplot being clustered in close proximity to 

the channel sediments samples from Singh et al. (2005a), with these samples 

understood to be enriched in quartz. This sort of mineral sorting response is further 

evidenced by the trend towards phyllosilicates that is substantiated by the presence of 

suspended sediments from Singh et al. (2005a). The Al2O3/SiO2 and Fe2O3/SiO2 

ratios found in this study appear to reflect the compositional maturity of sediments, 

originating from the Himalayas and Siwaliks, and moving towards the delta, with the 

Sundarbans evidence of the highest weathering maturity. 

The Pettijohn and Herron diagrams (Fig. 7a & b) indicate that clastic 

weathering products of the Sundarbans are primarily litharenite and 

greywacke/wacke, with Lothian and Dhanchi representing the most mature sediment. 

The presence of Gplot samples within arkose, with all Sundarbans samples plotting 

towards litharenite and greywacke/wacke, may be interpreted as grain-size variation 

with increasing clay content. The tectonic provenance discrimination plots show that 

the majority of the Sundarbans samples fall into the active continental margin field 

(Fig. 8), with some scatter of samples into the island arc field. 
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4.3.2. Element enrichment ratios for the Sundarbans 

Element ratios in the Lothian, Gplot, Dhanchi, Singh et al. (2005a) and Bhuiyan et al. 

(2011) datasets are shown in Fig. 9. SiO2 mobility is considered important for 

interpreting chemical weathering, soil formation and distribution of elements in 

natural waters (Singh et al., 2005a). There is a depletion in SiO2 relative to Singh et 

al. (2005) data points, but enriched compared to Bhuiyan et al. (2011). Titanium is 

understood to be a relatively immobile element and appears to be most enriched in 

the Lothian and Dhanchi cores, but most depleted in the Gplot Island core. There is a 

progressive depletion in CaO and Na2O throughout the Sundarbans cores, which is 

reflective of these being highly mobile elements. Potassium shows some depletion in 

the Sundarbans cores, with Gplot being more enriched in K2O relative to Lothian and 

Dhanchi. As discussed by Singh et al. (2005a), potassium tends to be preferentially 

adsorbed to clay minerals, as found by Flood et al. (2016) for the Sundarbans. 

Therefore, the enrichment of K2O may be due to silicate minerals formed during 

weathering or alteration of existing clay minerals such as montmorillonite, which 

tend to incorporate potassium relative to Na2O (Singh et al., 2005a). Clay minerals 

also have a tendency to incorporate magnesium as well as K2O, and lose Na2O, 

which can be see with the pronounced enrichment of MgO in the Dhanchi and 

Lothian cores. Due to the highly mobile nature of Na2O and CaO during weathering, 

these may be readily dissolved and taken up into and enriched in solution (i.e., in 

aqueous phase) as opposed to being deposited as part of the sediment load. This has 

been found by Singh et al. (2005a) and Singh et al. (2005b), who show a 

concentration of these elements in the dissolved fraction of fluvial sediments. MgO 

shows some mobility between sites in the Sundarbans with Lothian and Dhanchi 
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slightly enriched compared to Gplot. Although Mg may dissolve during weathering 

and enter the aqueous phase, it has been found to be depleted in channel sediments, 

but mobile within suspended and floodplain sediments (Singh et al., 2005a). This 

may explain the Mg variability between sites in the Sundarbans, with Gplot 

composed of coarse-grained, channel-type sediment, relative to Lothian and 

Dhanchi. 

4.3.3. Inter-element variability from the Sundarbans 

Fig. 10 displays inter-element relationships plotted on variation diagrams using 

Al2O3, SiO2 and TiO2 along the x-axis. In the majority of the variation diagrams, 

some linear trend from Lothian, Gplot, and Dhanchi are observed with positive or 

negative correlations. Relatively strong negative correlation of SiO2 with Al2O3 and 

Fe2O3 indicates grainsize control on the geochemistry of the Sundarbans‘ weathering 

products, with little correlation (R
2
 = 0.04) with K2O. The increasing trend of TiO2 

with Fe2O3 is attributed to the enrichment of heavy minerals in Sundarbans 

sediments. However, MgO and K2O have different patterns with Al2O3 and TiO2, 

respectively. Plotting the chemically immobile TiO2 against Al2O3 provides further 

insight into the hydrodynamic and chemical behaviour of the major mineral phases 

and indicates that they were concentrated into the fine-grained sediment fraction (i.e., 

monotonic relationship reflects decreasing grain-size). High concentrations of TiO2 

in Sundarbans sediments and a strong correlation with Al2O3 indicate that TiO2 could 

potentially be derived from mica, although there is a poor correlation with K2O and 

TiO2. TiO2 plotted against Fe2O3 displays a good correlation (R
2
 = 0.68) indicating 

their common sources from ferromagnesium minerals such as biotite, amphibole, and 

pyroxene (cf., Singh et al., 2005a). A poor correlation of K2O with MgO and Al2O3 

indicates an absence (or failure to detect) of illite in these sediments (cf., Singh et al., 
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2005a). The strong correlation found for Fe2O3 with Al2O3 may be associated with 

alteration of biotite into aluminosilicates and Fe(III) oxides (cf., Singh et al., 2005a). 

The distribution of major elements in the Sundarbans sediments suggests that 

weathering products have strong inter-elemental linkage. 

 

4.3.4. A–CN–K diagram and chemical index of alteration (CIA) for Sundarbans 

Fig. 11 (a) shows a ternary A–CN–K diagram along with the location of important 

rock-forming minerals, UCC (Taylor and McLennan, 1985) and natural waters (cf., 

Singh et al., 2005a). The sediments from the Sundarbans tend to plot towards the 

Al2O3 apex, indicating loss of Na and Ca during weathering compared to the UCC, 

with a tendency for samples to plot towards A–CN, with a slightly larger proportion 

of samples towards the A of the apex. CIA values for Lothian, Gplot, and Dhanchi 

are 46–67, 53–76, and 52–65, respectively. The average CIA of the Sundarbans is 

compared with Singh et al. (2005a) and Bhuiyan et al. (2011) (Fig. 11b). There 

appears to be a fair degree of weathering found in the Sundarbans sediments, with 

Gplot Island showing the highest mean CIA. The Sundarbans data show a higher 

degree of weathering, relative to Bhuiyan et al. (2011) from the Brahmaputra-Jamuna 

River. With the exception of the flood and suspended sediment CIA values of Singh 

et al. (2005a), the Sundarbans CIA values show an increasing degree of weathering 

compared with channel sediments. 

 

4.3.5. A–CNK–FM and S/10–CM–NK variability of the Sundarbans 

Shown in Fig. (12 c,d) are A–CNK–FM and S/10–CM–NK ternary plots (Nesbitt and 

Young, 1989; Singh et al., 2005a). Sundarbans samples tend to be positioned in the 

centre of the ternary diagram (Fig. 11c), with Gplot closer to feldspar composition 
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(cf., Singh et al., 2005a). Increased weathering of fine-grained material, tends to have 

a winnowing effect of Fe-oxyhydroxides and biotite, which may explain the 

enrichment towards the FM apex with Lothian and Dhanchi (cf., Singh et al., 2005a). 

The presence of suspended sediments from Singh et al. (2005a) closest to the FM 

apex may indicate secondary sedimentary processes concentrating heavy minerals in 

sediment (Singh et al., 2005a). The suspended sediments from Singh et al. (2005a) 

may be considered to be one end-member in this ternary diagram, with Gplot being 

the opposing end-member in the A–CNK apex. The arrows depicted show the 

predicted weathering trends that have been found in the GAP, in which Sundarbans 

samples appear to following this predicted weathering trend. 

In the S/10–CM–NK diagram (Fig. 11d) all of the Sundarbans samples plot 

away from the S/10–CM apex and towards NK, with Gplot samples plotting more 

strongly towards the S/10–NK apex and, Lothian and Dhanchi plotting towards the 

CM-NK apex. Compared with Singh et al. (2005a) and Bhuiyan et al. (2011), there is 

some similarity present, with the exception of suspended sediments of Singh et al. 

(2005a) which plot towards the CM apex. The position of the Gplot samples at the 

S/10–NK apex may be attributed to greater quartz presence in these samples, relative 

to Lothian and Dhanchi, which show a decrease in quartz, as these plot towards the 

CM–NK apex. 

 

4.3.6. Chemical mobility within the Sundarbans Holocene sediments 

The chemical mobility is shown in Fig. 12 for the Sundarbans sediments during 

weathering processes, and is calculated in terms of % change normalised to TiO2 for 

individual major/trace elements against progressive chemical alteration, using the 

CIA values. A decreasing trend was found in chemical mobility of Na2O3 (a), MgO 
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(b), Al2O3 (c), SiO2 (d), K2O (f) in all cores, with CaO (g) and Zr (q) showing the 

greatest decreasing trend. An increase was found in P2O5 (e) and Fe2O3 (i) mobility, 

with an unvarying trend in Ba (j), and V (k). Mn (h), Cr (l), Ni (m), and Cu (n) 

appear to have no discernible trend with CIA. A slight increase was found in Zn (o) 

with a slightly greater increase in Rb (p) with increased CIA. 

 

5. DISCUSSION 

Deposition of the TMF in the far western extent of the Sundarbans is shown in Fig. 

13. There is a gradual shift in the dominance of fluvial processes in deposition from 

c. 5,000 cal yr BP to a more mixed fluvio-tidal depositional system from c. 3,000 cal 

yr BP, to its current state as a tidal dominant delta. Sedimentation rates for the 

present-day eastern Sundarbans have been reported as being c. 1.0 ± 0.9 cm yr
-1

 

(Rogers et al., 2013) whereas Flood (2014) and Flood et al. (2015) determine a 

sedimentation rate of c. 1.4 mm yr
-1

 for the far western Sundarbans over the late 

Holocene (c. last 4,000 cal yrs). The model proposed in this study is that there is a 

gradual (or rapid) loss of the westerly tidal transported sediment plume along the Bay 

of Bengal coastline. This primarily suspended load then moves up the flood 

dominant estuaries of the Sundarban blind rivers (Bhattacharyya et al., 2013), to be 

deposited in the distributive system between estuaries, as the sediment plume moves 

westward (cf., Rogers et al., 2013). The TMF in the most western extent of the G-B 

delta is proposed as being a diachronous facies unit, with fluvial dominance 

prevalent c. 5,000 yrs BP that gradually developed into a mixed fluvio-tidal 

dominant delta from c. 3,000 yrs BP, to being a tidal dominant delta at present. 

Sediment is sourced primarily from the Ganges river and delivered to the coastal 

shelf as a plume that is re-worked onto the delta plain with the emerging tidal 
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supplied sediment plume thinning in volume and sediment size as it is carried further 

west to the tidal dominant delta (Fig. 13). The depositional model proposed in this 

study is a series of incremental developments from previous studies, particularly 

from Goodbred and Kuehl (2000a), Allison et al. (2003), and Rogers et al. (2013). 

The TMF in the far western extent of the Sundarbans is considered to reflect 

abandoned floodplain overbank deposits (cf., Goodbred and Kuehl, 2000a). The 

processes of deposition reflecting tidal/marine processes (cf. Allison et al., 2003), 

with the source of the TMF sediments being the Ganges River associated with 

monsoon flood discharge and sediment being dispersed westwards by currents 

followed by onshore transport (Rogers et al., 2013). 

 

5.1. Lithofacies variability and dynamics in the TMF: evidence from the West 

Bengal Sundarbans 

 

The Lothian and Dhanchi Island GSDs may be interpreted as reflecting a muddy tidal 

flat environment with the overarching presence of silt and clay (e.g., Fig. 2, Fig. 4b), 

although it is difficult to determine sedimentary structures from the cores (cf., 

Allison et al., 2003; Goodbred and Saito, 2011; Flood, 2014; Flood et al., 2015). 

The dominant upward-fining in GSDs from these cores may be attributed to 

slack water deposits as a result of tidal deposition (cf. Bass et al., 2002). In terms of 

silt and clay deposition through tides, suspension of sediments lasts longer than sands 

and may therefore be transported over long distances and may be advected into or 

away from a depositional site (Bass et al., 2002). These fining-up sequences, 

comprising muddy tidal flats may cap subtidal sand ridges (Wells, 1995). A similar 

model of facies succession has been proposed by Goodbred and Saito (2011), where 
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the migration of tidal channels and creeks across tidal flats, contribute to fining up 

facies succession. The clay fraction indicated by the first and second principal 

components may represent the mud-drapes and fluid-muds attributed to slack water 

or poor water flows (cf., Wells, 1995). However, this is difficult to judge as a limited 

sample population was used in the GSD analysis, thus only the general trend of 

fining-up (e.g., Dhanchi PCA score plots and GSD facies shown in Fig. 3(h, i)). 

Gplot GSDs may be interpreted as sub- to intertidal-tidal flat environment 

(cf., Goodbred and Saito, 2011). Transition between the two broader sedimentary 

sub-units indicates the lower sub-unit was within closer proximity to fluvial sources 

of sediment given coarse GSDs (Fig. 2 and Fig. 3(a-d)) (Hughes, 2011). GSD 

interpretation indicates a correlation with effective transport energy as opposed to 

any direct correlation with proximity to marine or fluvial sources. With a relatively 

coarser sediment load, the probability of sediment transport processes that maintain 

such a sediment load decreases (McLaren and Bowles, 1985). As sediment deposits 

become coarser in a sequence, depositional processes take on the attributes of low-

energy functions with sediments becoming finer (McLaren and Bowles, 1985). From 

Gplot, although coarse sediment is present, the likelihood of transitioning into a finer 

facies increases with time. Cross phase similarity with PC1 from Dhanchi and Gplot 

Island is found with signs being different – but PCs measuring the same 

phenomenon; dominant GSDs (Fig. 3 and 4). There is a similar fining-upwards drift 

through the core (Fig. 2 and Fig. 3(c-e)) with PC2 indicative of the presence or 

absence of the 4.5 to 7 φ elements, and acting as a bridge to the presence of very fine 

and slightly coarser sediment. Three broader stratigraphic facies have been identified 

in the Lothian and Dhanchi Island core data which are similar to those developed by 

Allison et al. (2003). It is proposed that the statistically derived facies presented in 
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this study may be considered to range over two of the principal facies that Allison et 

al. (2003) outlined in their study (i.e., those of the ‗intertidal shoal‘ and ‗supratidal‘ 

facies). 

Lithofacies of the Sundarbans and the TMF demonstrate a high degree of 

variability between core-sites, however application of multivariate statistics offers 

enhanced scope for palaeoenvironment interpretation. The lithofacies models 

developed are applied to each site separately, with this approach taken given the 

GSDs from the Gplot Island core would skew the analysis of the GSD data from the 

Lothian and Dhanchi Island cores. Although the sites are relatively close (within 10 

km), sediment dynamics and variability can be understood to be highly divergent 

when the Gplot GSD data is examined. One potential explanation for this variability 

may be in the depositional environment of the Gplot site. Tidal dominated 

environments are indicative of intertidal to shallow subtidal zones, which are 

dominated by muddy tidal flats and tidal channels and, may also include channel-

mouth and channel-side bar features (Goodbred and Saito, 2011). These tidal ridges 

are understood to accrete vertically and horizontally (akin to subdued flooding 

levees, i.e., channel-side features) until forming a shallow intertidal flat with 

vegetation succession taking place (Goodbred and Saito, 2011).  

 

5.2. Mineralogy of the West Bengal Sundarbans 

Mineralogy from the West Bengal Sundarbans reveals key variability between the 

islands. Terrigenous minerals are abundant in all cores, principally quartz, feldspars, 

and muscovite mica. Quartz in Holocene sedimentary environments varies under a 

number of circumstances (see Wedepohl, 1978; Kabata-Pendias, 2001; Hinman, 

1998; Salminen et al., 2005; Garzanti et al., 2011). Quartz in these sediments may 
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reflect detrital deposition of weathering-resistant sediment in the West Bengal 

Sundarbans. The Ganges River is understood to carry more quartz and less Ca-

plagioclase than the Brahmaputra river (Garzanti et al., 2011). With increased 

erosion and sorting, the ratio of feldspar to quartz is generally diminished in sand 

composition with higher proportion of quartz indicative of coarse grain-size 

sediments (Nesbitt et al., 1996). This is seen in the mineral clusters 5, 4, 3, and 1 

with mineralogy from Gplot (depth of c. 386 cm to c. 225 cm), having high quartz, 

muscovite, albite, and kaolinite contents.  

There is a dominant fluctuation between high quartz and high muscovite in 

Dhanchi, particularly in clusters 2, 4, and 6 (core base to c. 220 cm). Mica may 

illustrate winnowing and active deposition on continental shelf systems (Doyle et al., 

1968; Adegoke and Stanley, 1972; Doyle et al., 1979; Dias et al., 1984). Common 

minerals like quartz, feldspars, and calcite are generally associated with significantly 

reduced heavy mineral loads (Garzanti et al., 2008). Heavy minerals tend to be 

enriched in the fine tail of the grain size distribution with quartz, feldspars, and 

calcite found to comprise the coarse tail (Garzanti et al., 2008). Thus, micas make up 

the coarsest tail of a grain size distribution for sediment due to their platy shape, with 

the finest grain size fraction composed of zircon, monazite or magnetite because of 

their extreme density (Garzanti et al., 2008). The predominance of mica and reduced 

quartz content from the base of the core to c. 220 cm reflect this variability in 

hydrodynamic sorting of minerals. From 220 cm to the core surface, mica 

composition is reduced with much less variability in quartz composition (see Table 5 

and Fig. 5). 

In the Lothian core, fluctuations between clusters 2, 4, and 6 from the base of 

the core to c. 500 cm may reflect variability in sand and silt deposition. Cluster 2 has 
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higher muscovite abundance (50.9%) relative to quartz (34.8%) with cluster 4 made 

up of 78.6% quartz and no muscovite, variability in these detrital minerals may be a 

result of diverging settling velocities (cf., Dias et al., 1984). Mineralogical variability 

over time scales of centuries of deposition in terms of sediment hydraulics may be 

attributed to the relative height of the tidal frame and the upward development of an 

intertidal mudflat (cf., Allen, 1990; 2000), with fluctuations in tidal frame that 

contribute fluctuations in settling of finer (i.e., muscovite) with coarser sediments 

(i.e., quartz grains). Cluster 6 is composed of nearly equal quantities of quartz and 

muscovite at 38.8% and 33.6%, with kaolinite at 11.9%, indicative of reduced 

energy. 

Chemical weathering in lowland rivers may control the formation of kaolinite 

from feldspars and mica mineral assemblages, demonstrated in Fig. 14(a) where a 

strong correlation is found between muscovite and kaolinite. Smectite, attributed to 

be an indicator mineral for Ganges sediment provenance (Heroy et al., 2003) was not 

found in this study or by Sarin et al. (1989), where kaolinite content ranged between 

6.7% and 13.6%. The lack of smectite is attributed to the requirement of dehydration 

experiments needed for positive smectite identification. Illite was not found either 

but may be attributed to late stage weathering within the GAP (cf., Singh et al., 

2005a). 

Kaolinite and muscovite percentages shown in Fig. 14(a) (R
2
 = 0.90), show 

kaolinite formation possibly a function of weathering in mica (cf., Stoch and Sikora, 

1976). Muscovite mica to kaolinite formation is the result of transformation of: 

muscovite  mixed layer muscovite/montmorillonite  montmorillonite  

kaolinite (Stoch and Sikora, 1976). It is uncommon for montmorillonite to be found 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

34 

 

and this may be due to montmorillonite existing in an unstable intermediate phase 

during weathering (Stoch and Sikora, 1976). 

Kaolinite and quartz shown in Fig. 14(b) being highly negatively correlated 

(R
2
 = –0.96). Correlation is attributed to grain-size variability and has been known to 

occur in estuaries where quartz is dominant in sand and phyllosilicates in greater 

abundance in finest fraction (Galán et al., 2003). Where there are greater quantities 

of quartz there is a concomitant decrease in kaolinite. 

Oscillating trends in mineral clusters found in the Dhanchi core are indicative 

of silt and sand-size sediment, similar to the Lothian Island core, with the Gplot core 

showing oscillating variability in mineral clusters associated with high mica and 

quartz content, indicative of varying deposition in sand and silt. As the feldspar is 

composed mainly of albite, chemical weathering tends to alter plagioclase feldspar as 

opposed to K-feldspar and quartz, with the abundance of albite indicative of 

weathered sediment (Grant 1963; Nesbitt and Young 1989; Nesbitt et al., 1996). 

High quartz content compared to other minerals is indicative of low-relief 

tropical weathering within the Bengal Basin (Potter, 1978; Mukherjee et al., 2009). 

In gentle slopes, water easily penetrates into the substrate, dissolving the most 

soluble constituents and accumulating the less mobile ones (Gutierrez, 2005). 

Formation of kaolinite from feldspar and mica in soil and sediments as a result of 

meteoric water drainage (Islam et al., 2002; Bjørlykke, 1998). This has been known 

to occur within warm, humid climates, particularly under tropical conditions (Islam 

et al., 2002). Formation of kaolinite is due to greater leaching conditions with high-

rainfall (Ehlmann, 1968; Islam et al., 2002). 
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5.3. Geochemistry of the West Bengal Sundarbans 

The geochemistry of the Holocene sediment from the West Bengal Sundarbans can 

be characterised as intensively weathered, terrestrial sediment derived from the 

Ganges River, principally the GAP. Therefore we suggest that sediments of the TMF 

are derived from the weathering and transport of Himalayan derived sediments, with 

geochemical data supporting the two stage weathering model proposed by Singh et 

al. (2005a), with initial weathering in the Himalaya and subsequent weathering under 

a humid sub-tropical climate (Singh et al., 2005a). The first and second weathering 

cycles are related to illite, and smectite dominance, respectively (Sarin et al., 1989; 

Singh et al., 2005a). Although illite-smectite variability was not found in this study, 

several aspects of the geochemical data validate both the source and processes (i.e., 

‗second cycle‘ weathering products) in the TMF of the West Bengal Sundarbans. 

The maturity of sediments in the Sundarbans can be derived from Fig. 6 and 

from Fig. 7(a) following the Pettijohn et al. (1972) index of chemical maturity with 

mineral stability following Herron (1988) (Fig. 7b). The Al2O3/SiO2 versus 

Fe2O3/SiO2 presented in Fig. 6 for the Sundarbans along with the Siwaliks and the 

Himalayan sources show that the increasing ratios from low-to-high are indicative of 

decreasing quartz proportion and enrichment in phyllosilicates, respectively (Singh et 

al., 2005a; Garzanti et al., 2010; Garzanti et al., 2011). The linear trend shown in Fig. 

6 may correspond to mineralogical sorting of sediments during transportation (Singh 

et al., 2005a; Garzanti et al., 2008; Garzanti et al., 2009). The lower ratios found in 

samples from Gplot, with the subsequent increasing trend, indicate increasing 

compositional maturity in Sundarbans sediments (cf., Singh et al., 2005). Textural 

maturity is further substantiated by the Pettijohn et al. (1972) classification scheme, 

where the majority of Sundarbans samples are found to be mostly litharenite and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

36 

 

greywacke/wacke. Mineral stability in the modified classification scheme of 

Pettijohn et al. (1972) by Herron (1988) shows a consistency in the Sundarbans being 

mineralogical mature, with most samples found to be litharenites and wacke (Fig. 

7b). As discussed by Herron (1988), the Fe2O3/K2O ratio can be considered an 

indicator of mineralogical stability. The most stable rock-forming minerals found at 

low temperature and pressures in sedimentary environments are K-feldspar, 

muscovite mica, and quartz (Herron, 1988). K-feldspar and muscovite mica tend to 

have high quantities of K, and in all three there is a low Fe content (Herron, 1988). 

There tends to be a higher Fe and Mg content in less stable rock-forming minerals 

(Herron, 1988). Stable mineral assemblages therefore possess low Fe2O3/K2O ratios, 

while less stable mineral assemblages that are found close to sediment source have 

high Fe2O3/K2O ratios (Herron, 1988). The SiO2/Al2O3 ratio allows for a distinction 

between high-ratio sandstones and quartz-rich sands, and low-ratio shales (Herron, 

1988). With the exception of some of the samples from Gplot, the majority of 

Sundarbans sediments plot within a mineralogically-stable, silica-depleted litharenite 

classification. Furthermore, these Sundarbans samples appear to be more mature 

relative to those of Singh et al. (2005a) and Bhuiyan et al. (2011), indicating that 

these samples are located further from their source. The presence of the Sundarbans 

samples in these plots shows that these are also undergoing stronger degrees of 

weathering, relative to the upper reaches of the GAP and Brahmaputra-Jamuna 

rivers. A complex relationship exists between tectonic setting and having a unique 

geochemical signatures, with source and depositional sites having divergent tectonic 

settings (McLennan et al., 1990; Bahlburg, 1998; Armstrong-Altrin and Verma, 

2005). 
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 The enrichment ratios found in the Sundarbans sediments illustrate 

dissolution during chemical weathering, whereby SiO2, Na2O, and K2O depletion 

may be attributed to the dissolution of feldspar minerals (Nesbitt and Young, 1984; 

Singh et al., 2005). Furthermore, increased distance from sediment source, coupled 

with increased weathering, indicate a depletion of SiO2 and K2O in the Sundarbans 

sediments, relative to what was found by Singh et al. (2005a). The weathering of 

biotite and ferromagnesium minerals tends to release Mg and K (Clow and Drever, 

1996; Singh et al., 2005a; Garzanti et al., 2010; Lupker et al., 2012; Bouchez et al., 

2012). The depletion of Na and Ca may be attributed to their highly mobile nature 

during chemical weathering (Nesbitt and Young, 1984; Singh et al., 2005a; Bouchez 

et al., 2012). This then results in these elements being concentrated in dissolved river 

water loads, hence the subsequent depleted nature of these in the Sundarbans 

samples. The immobility of Ti means that it is enriched in all Sundarbans samples, 

mainly Lothian and Dhanchi, with a lower enrichment ratio in Gplot, which was 

found to have a ratio similar to the UCC. Potassium has been found to be less mobile 

than Ti, and may be associated with clay mineral formation within the GAP whereby 

K is preferentially adsorbed by clay minerals (cf., Singh et al., 2005a). The 

enrichment of Fe2O3 in the Sundarbans samples may be attributed to weathering and 

depositional maturity of the Sundarbans, relative to the Gomati River and 

Brahmaputra-Jamuna sites examined by Singh et al. (2005a) and Bhuiyan et al. 

(2011), respectively.  

 The inter-element relationships found in the major element geochemistry 

show a generally negative trend with SiO2, indicating a grain-size control on the 

geochemistry of weathering products (Singh et al., 2005a; Garzanti et al., 2010, 

2011; von Eynatten et al., 2012; Lupker et al., 2013). Fe, Al, and Si are considered 
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immobile elements during Himalayan erosion since they are found to be resistant to 

chemical weathering (Galy and France-Lanord, 2001; Lupker et al., 2013). The 

relationship between TiO2 and Fe2O3 was attributed to both enrichment of heavy 

minerals in Sundarbans sediment and a common source of ferromagnesium minerals. 

A strong correlation for TiO2 with Al2O3 and K2O may indicate that Ti was derived 

from mica in fluvial sediments (Galy and France-Lanord, 2001; Singh et al., 2005a; 

Lupker et al., 2013). Although the correlation for K2O was poor (R
2
 = 0.06), the 

correlation with Al2O3 was relatively strong (R
2
 = 0.66). The poor correlation with 

K2O may be attributed to the substitution effect of K with Rb (El-Makky and Sediek, 

2012). Singh et al. (2005a) consider correlation between K2O with MgO and Al2O3 

(Fig. 10d,f) to reflect illite in suspended sediments. However, this was not found in 

this study, indicating increased weathering and illite removal within the Sundarbans. 

The lack of smectite may also be linked to the lack of correlation found between 

MgO and Al2O3, where MgO has weathered out of sediment and dissolved into 

solution (Fig. 10f). Dissolution of MgO has been found by Singh et al. (2005b) to 

contribute heavily to the cation budget of the Brahmaputra, where on average 75% of 

the cations are Ca and Mg. 

The A–CN–K ternary diagram and CIA (Fig. 11a,b) reveal a trend of 

increasing weathering throughout the Sundarbans sediments. With progressive 

chemical weathering, there is an increase in clay mineral composition with a 

concomitant decrease in feldspars and other minerals (Singh et al., 2005a; Garzanti et 

al., 2010, 2011; Bouchez et al., 2012; Lupker et al., 2012, 2013). This is further 

evidenced by Sundarbans sediments following a predicted weathering trend along the 

A–CN apex of the ternary diagram. The location of both Lothian and Dhanchi 

samples, along with Gplot samples at the highest point on the A–CN–K ternary 
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diagram is indicative of higher intensity chemical weathering. The A–CNK–FM 

ternary diagram (Fig. 11c) illustrates the predominant trend of Sundarbans samples 

to follow the predicted weathering trend in the GAP as proposed by Singh et al. 

(2005a). The S/10–CM–NK ternary diagram (Fig. 11d) shows that data plot parallel 

to the S/10–CM apex, similarly to those Singh et al. (2005a) and Bhuiyan et al. 

(2011) data. This trend indicates the control of Na and K mobility during weathering 

(Nesbitt and Young, 1984; Singh et al., 2005a; Garzanti et al., 2011; Lupker et al., 

2012; Bouchez et al., 2012). The proximity of the Sundarbans samples to Na and K 

illustrates the higher degree of weathering in the Sundarbans, compared with Singh 

et al. (2005a) and Bhuiyan et al. (2011). The primary distinction between Ganges and 

Brahmaputra sources in the G-B Delta is the degree of weathering in sediments, with 

Brahmaputra derived sediments being considerably less weathered than those for the 

Ganges. What this study has shown is that not only are sediments from the 

Sundarbans more weathered than those found in the Brahmaputra, ruling out a 

Brahmaputra source of sediment; but that sediments are more intensively weathered 

than those found by Singh et al. (2005a), with the exception of floodplain and 

suspended sediments. At the Sundarbans, sediments are considered to be channel 

sediments, and, given the lithofacies found in this study, may be considered to be 

intensively weathered. 

Chemical mobility within the Sundarbans sediments backs up the inference 

regarding intense weathering, since increasing weathering intensity is associated with 

decreasing variability in Si, Na, and K. The rapid decrease in CaO throughout the 

Sundarbans sediments shows the predominance of Ca to be released during the 

weathering of feldspars, but not retained in the clay fraction and being dissolved into 

solution (Singh et al., 2005a). This is supported by Singh et al. (2005b) whereby the 
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cation budget of the Brahmaputra is dominated by Ca and Mg, with dissolution of 

CaO increasing as a result of weathering (Fig. 12g). Ca from the Ganges River 

sediment has been found to be reduced by half from the initial Ca composition 

(Bouchez et al., 2012). 

Zirconium, and its mineral constituent zircon may be related to grain-size 

variability, whereby Zr has been shown to be correlated with coarse-size fractions 

(e.g., fine to very-fine sands) (Flood et al., 2016). With increased weathering, there 

may be a concomitant increase in clay minerals, leading to fining-up in lithofacies. 

Sediments in the sites examined in this study are composed of the TMF 

which are derived from the Ganges River through the GAP, having undergone two 

cycles of weathering. The provenance and depositional model outlined in this study 

is both enhanced and adds to the model of Rogers et al. (2013), whereby 

sedimentation is locally heterogeneous in the Sundarbans with seasonal delivery of 

sediment distributed throughout all parts. Although Rogers et al. (2013) analysed 

present-day sedimentation in the Bangladesh Sundarbans, the present study has 

demonstrated that sediments from the West Bengal Sundarbans are sourced from the 

GAP, through the Ganges River. As Rogers et al. (2013) have found the majority of 

sediment deposited on the tidal delta plain during monsoonal activity was derived 

from flooding. The catchment and upper floodplain may be considered the principal 

source (i.e., GAP) of sediments accreting on the lower delta plain surface (Rogers et 

al., 2013). 

 

5.4. Summary of the mineralogy, grain size, and chemical index of alteration from 

the Sundarbans 
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The relationship between mineral clusters, GSD facies, and CIA is shown in Fig. 15 

from the Lothian, Gplot, and Dhanchi cores. In each core there is a distinct trend, 

with increasing weathering intensity moving from the base of the core to the core 

surface shown by the CIA values along with a fining-up in GSD facies. Mineral 

clusters demonstrate this relationship between mineralogy and GSD facies, with 

higher quartz, muscovite, and albite indicative of coarse grained sediment, and 

kaolinite of fine grained sediment (e.g., mineral clusters 6, 4, 2). It has been found 

that quartz, feldspar, and heavy minerals steadily increase with depth relative to 

micas, such as muscovite and clay-rich aggregates in the G-B delta (Garzanti et al., 

2011). The fluctuations between muscovite mica and quartz reflect most strongly the 

differentiating settling velocities of sediment, whereby size shifts for micas, which 

settle slower than quartz in spite of their higher density (Garzanti et al., 2008). In this 

respect, grain size facies illustrate the continuous fluctuations between slightly 

coarser, quartz dominated silts, and finer, muscovite mica dominated clays. This is 

seen with the increase in kaolinite content moving up through each of the cores. 

Chemical weathering indices have been found to be similar in both the Ganges and 

Brahmaputra sediments, indicative of significant weathering in monsoonal climates 

(Garzanti et al., 2011). The CIA for each of the cores shown in Fig. 15 has illustrated 

the variability in suspension sorting, the weathering indices decrease with depth 

through the cores from the Sundarbans (cf., Garzanti et al., 2011). This trend in 

decreasing weathering intensity has been found to be higher in the Ganges plains 

than in the Brahmaputra (Garzanti et al., 2011). This increase in CIA moving up-

core, is understood to be a hydraulic-sorting effect, as a result of decreasing Al, 

related to phyllosilicates, and increasing Na and Ca, associated with plagioclase, 

offset by a decrease in K and Mg (Garzanti et al., 2011). 
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The mineralogy of sediments from the Himalayas is composed primarily of 

quartz, micas, and feldspars, with the finer fraction composed mainly of 

phyllosilicates, clay assemblages and hydroxides (Garzanti et al., 2010, 2011; Lupker 

et al., 2013). During sediment transport these minerals are segregated with coarse-

grained quartz enriched in bedload at the bottom of the water column and 

phyllosilicates and clays found to be enriched in shallow surface waters (Lupker et 

al., 2013). The sediments of the TMF presented in this study reflect this partitioning 

of mineralogy and geochemistry as a result of sediment transport. 

 

6. CONCLUSION 

The TMF of the Ganges-Brahmaputra Delta have been examined and found to reveal 

intensively weathered, terrestrial sediment derived from the Ganges River, 

principally the GAP. The TMF in the West Bengal Sundarbans are composed of 

sediments sourced from the Ganges that went through initial in-situ weathering, prior 

to being eroded and chemically weathered in the GAP, and finally being transported 

to the lower delta plain during the monsoon. The TMF is proposed as being 

diachronous in terms of the role played by fluvial and marine processes in 

deposition. The depositional model for the TMF in the far western extent of the G-B 

delta is that the sediment plume is then transported westwards by prevailing currents, 

and through tides these sediments are deposited onto the delta plain. This study 

presents a first-order approximation of lithofacies and geochemistry of the TMF on 

the western abandoned lower Ganges–Brahmaputra delta and demonstrates that: 

1. Geochemical data enhances the weathering model proposed by Singh et al. 

(2005a), with sediments of the TMF having undergone at least two cycles of 

weathering.  
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2. Mineralogy of the cores collected shows a predominance of quartz and mica 

with clay minerals. Quartz supply is interpreted as indicative of terrestrial 

sources of sediment, draining the Himalayas. 

3. Kaolinite formation is derived from feldspar and muscovite mica with 

kaolinite the product of intense chemical weathering.  

4. Fining upward trend in grain size distributions in the West Bengal 

Sundarbans. 

5. Dhanchi and Lothian Island lithofacies are considered to be muddy tidal flats 

with Gplot Island indicating an intertidal to shallow subtidal environment 

with possible channel-mouth and channel-side bar deposits. 

6. Geochemical, mineralogical and lithofacies composition of the TMF suggest 

it is locally heterogeneous with sediment derived from the Ganges and 

deposited tidally in a low-energy system following the model of Rogers et al. 

(2013). 
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Fig. 1 (i) Extent of the G-B tidal delta complex, (a) West Bengal Sundarbans (India), 

(b) East Bengal Sundarbans (Bangladesh), and (c) Kuakata Peninsula 

(Bangladesh) (adapted from Rogers et al., 2013), and (ii) sites cored in the 

West Bengal Sundarbans, India (November 2010) (after Flood et al., 2015) 

Fig. 2 Percentage (%) sand/silt/clay composition of the Lothian, Gplot, and Dhanchi 

Island cores 

Fig. 3 First (a) and second (b) principal component loadings for each grain size class 

of the clr-transformed GSD data (Gplot Island), score plots for first (c) and 

second (d) principal components (Gplot Island), biplot of first and second 

principal components (Gplot Island) (e), first (f)  and second (g) principal 

component loadings (Dhanchi Island), first component (h) and second 

component (i) score plots (Dhanchi Island), and biplot of first and second 

principal components (Dhanchi Island) (j) 

Fig. 4 Vertical transition of the broad stratigraphical facies of the TMF for Gplot 

Island (a) and Dhanchi Island (b) cores  

Fig. 5 (a) Biplot of the first and second principal components; (b) biplot of the 

second and third principal components; (c) biplot of the first and third principal 

components; (d) triplot of the first, second, and third principal components; (e) 

distribution of XRD cluster groups throughout the cores, with Lothian Island 

(i), Gplot Island (ii), and Dhanchi Island (iii) 

Fig. 6 Al2O3/SiO2 versus Fe2O3/SiO2 for river sediments of the West Bengal 

Sundarbans, Ganga alluvial plain, Siwaliks and the Himalayan sources, and 

data from Singh et al. (2005a) and Bhuiyan et al. (2011). Lower and higher 

ratios are indicative of the quartz dominance moving towards enrichment of 
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phyllosilicates, respectively. Linear trend in mineralogical sorting is indicative 

of transportation. Gray ellipses indicate composition of source area: the 

Himalaya and the Siwaliks (Galy and France-Lanord, 2001). Star corresponds 

to average UCC (Taylor and McLennan, 1985). CS: channel sediments, FS: 

flood sediments, and SS: suspended sediments. *Data points from Singh et al. 

(2005a), **average data points from Singh et al. (2005a), ***average data 

points from Bhuiyan et al. (2011) 

Fig. 7 Geochemical classification diagrams of the West Bengal Sundarbans 

sediments along with data from Singh et al. (2005a) and Bhuiyan et al. (2011) 

from (a) Pettijohn et al. (1972) and (b) Herron (1988). CS: channel sediments, 

FS: flood sediments, and SS: suspended sediments. *Data points from Singh et 

al. (2005a), **average data points from Singh et al. (2005a), ***average data 

points from Bhuiyan et al. (2011) 

Fig. 8 Tectonic discrimination diagram for the West Bengal Sundarbans sediments. 

Boundaries of fields are from Roser and Korsch (1986). CS: channel 

sediments, FS: flood sediments, and SS: suspended sediments. *Data points 

from Singh et al. (2005a), **average data points from Singh et al. (2005a), 

***average data points from Bhuiyan et al. (2011) 

Fig. 9 Element ratio of West Bengal Sundarbans sediments calculated from average 

major element concentrations normalised to UCC (Taylor and McLennan, 

1985) with respect to Al2O3 (Eq. 2). CS: channel sediments, FS: flood 

sediments, and SS: suspended sediments. **Average data points from Singh et 

al. (2005a), ***average data points from Bhuiyan et al. (2011) 

Fig. 10 Variation diagrams of major elements in West Bengal Sundarbans sediments, 

data are plotted against Al2O3, SiO2 and TiO2. For reference, UCC and World 
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Sediments were also plotted as grey circle and cross, respectively, with 

**average data points from Singh et al. (2005a), ***average data points from 

Bhuiyan et al. (2011). CS: channel sediments, FS: flood sediments, and SS: 

suspended sediments 

Fig. 11 (a) A–CN–K ternary diagram of molecular proportions showing sediment 

suites from the West Bengal Sundarbans. A = Al2O3; C = CaO; N = Na2O and 

K = K2O. Also plotted is the UCC (Taylor and McLennan, 1985) in a grey 

cross, along with idealised mineral compositions. Shown are the predicted 

weathering trends exhibited by the Ganga alluvial plain with arrows, which had 

experienced incipient to moderate chemical weathering. (b) Bar plot of average 

Chemical Index of Alteration (Eq. 1) values of the West Bengal Sundarbans 

sediments along with Singh et al. (2005a) and Bhuiyan et al. (2011) for 

comparative purposes. (c) A–CNK–FM and (d) S/10–CM–NK ternary 

diagrams showing sediment suites from the West Bengal Sundarbans. A = 

Al2O3; C = CaO; N = Na2O; K = K2O; F = Total Fe; M = MgO; S = SiO2. 

Fig. 12 Chemical mobility in the West Bengal Sundarbans sediments during 

weathering processes, calculated in terms of percentage change (normalised 

with respect to TiO2) of individual major/trace elements vs. progressive degree 

of chemical alteration (CIA values) (Eq. 3) 

Fig. 13 Cartoon example of depositional model for the far western extent of the 

Ganges-Brahmaputra delta in the West Bengal Sundarbans. The TMF is 

proposed as being a diachronous facies unit whereby fluvial dominance was 

prevalent c. 5,000 yrs BP that gradually developed into a mixed fluvio-tidal 

dominant delta from c. 3,000 yrs BP, to finally its current state as being a tidal 

dominant delta. Sediment is sourced primarily from the Ganges river and 
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delivered to the coastal shelf as a dominantly monsoonal plume that is re-

worked onto the delta plain, with the emerging tidal supplied sediment plume 

thinning in volume and sediment size as it is carried further west to the tidal 

dominant delta (figure not to scale) 

Fig. 14 (a) kaolinite and muscovite regression of XRD cluster representative 

samples. A strong positive correlation (R
2
 = 0.90) is found between these clay 

and mica mineral compositions, indicative of weathering of mica. (b) kaolinite 

and quartz regression of cluster representative samples. A strong negative 

correlation (R
2
 = –0.96) is found between kaolinite and quartz, indicative of 

grain-size variability 

Fig. 15 Mineralogy, grain size distribution (GSD) facies, and chemical index of 

alteration (CIA) from the Lothian, Gplot, and Dhanchi Island cores, with 

Lothian Island GSD adapted from Flood et al. (2015)  
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Fig. 12 
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Fig. 13 
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Table 1 

Principal 

component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of 

Variance 
Cumulative 

% Total % of Variance Cumulative % 

1 17.859 71.436 71.436 17.859 
 

71.436 
 

71.436 
 

2 3.633 14.531 85.966 3.633 
 

14.531 
 

85.966 
 

3 1.840 7.360 93.327 1.840 
 

7.360 
 

93.327 
 

4 0.523 2.090 95.417 0.523 
 

2.090 
 

95.417 
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Table 2 

Principal 

component 
Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 10.294 85.787 85.787 10.294 
 

85.787 
 

85.787 
 

2 1.008 8.399 94.186 

 

1.008 
 

8.399 
 

94.186 
 

3 0.622 5.181 99.367 

 

0.622 
 

5.181 
 

99.367 
 

4 0.048 0.4 99.767 

 

0.048 
 

0.4 
 

99.767 
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Table 3 

Site Depth (cm) Cluster group 

Gplot Island 356 1 

Dhanchi Island 456 2 

Lothian Island 22 3 

Dhanchi Island 304 4 

Lothian Island 78 5 

Dhanchi Island 184 6 
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Table 4 

Statistic (%) Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

Rp 8.728 5.551 7.126 15.295 9.134 6.168 

Weighted Rp 12.766 7.631 9.901 24.955 13.055 9.253 

Rexp 4.271 4.038 4.251 4.569 4.418 4.043 

X2 8.932 3.571 5.425 29.831 8.731 5.237 

D-statistic 0.491 0.438 0.594 0.229 0.432 0.355 

Weighted D-statistic 0.318 0.421 0.375 0.176 0.338 0.342 
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Table 5 

 

Quartz Muscovite Albite Microcline Clinochlore Kaolinite Dickite Vermiculite 

Cluster 1 58 18.8 10.4 0 4.2 8.7 0 0 

Cluster 2 34.8 50.9 0 0 0 13.6 0 0.7 

Cluster 3 58.2 22.1 10.2 0 2.7 6.9 0 0 

Cluster 4 78.6 0 7.7 8.2 0.9 0 4.6 0 

Cluster 5 59 20.9 13 0 0 6.7 0 0.4 

Cluster 6 38.8 33.6 10.1 0 5.5 11.9 0 0 
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Table 6 

 Cluster Mineralogical characteristics 

Cluster 1 
Relatively high quartz, muscovite, albite and clinochlore; moderate kaolinite abundance; 

absence of vermiculite, dickite, microcline. 

Cluster 2 
Relatively high muscovite and kaolinite; low quartz and possibly low vermiculite, absent of 

clinochlore, albite, dickite, microcline. 

Cluster 3 
Relatively high quartz, muscovite, albite; relatively high clinochlore, kaolinite and absent 

of vermiculite, dickite, microcline. 

Cluster 4 
High quartz content; relatively high microcline, and dickite; low albite and clinochlore; 

absence of muscovite and kaolinite. 

Cluster 5 
Relatively high quartz, muscovite, and albite content; low kaolinite content; absence of 

clinochlore, vermiculite, microcline, dickite. 

Cluster 6 
Relatively high muscovite, kaolinite, clinochlore and albite content; relatively low quartz 

content; complete absence of vermiculite, dickite, microcline. 
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Highlights 

 Holocene TMF in the West Bengal Sundarbans determined to show 

intensively weathered, terrestrial sediment derived from the Ganges Alluvial 

Plain (GAP) 

 Lithofacies is indicative of muddy tidal flat with aggradation and fining-up in 

grain size.  

 Sediment provenance indicates a continuing G-B sediment source from the 

active delta front, with sediment reworked over the far-western abandoned 

delta by tidal–estuarine forcing. 
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