408 research outputs found

    MAX-91: Polarimetric SAR results on Montespertoli site

    Get PDF
    The polarimetric Synthetic Aperture Radar (SAR) is a powerful sensor for high resolution ocean and land mapping and particularly for monitoring hydrological parameters in large watersheds. There is currently much research in progress to assess the SAR operational capability as well as to estimate the accuracy achievable in the measurements of geophysical parameters with the presently available airborne and spaceborne sensors. An important goal of this research is to improve our understanding of the basic mechanisms that control the interaction of electro-magnetic waves with soil and vegetation. This can be done both by developing electromagnetic models and by analyzing statistical relations between backscattering and ground truth data. A systematic investigation, which aims at a better understanding of the information obtainable from the multi-frequency polarimetric SAR to be used in agro-hydrology, is in progress by our groups within the framework of SIR-C/X-SAR Project and has achieved a most significant milestone with the NASA/JPL Aircraft Campaign named MAC-91. Indeed this experiment allowed us to collect a large and meaningful data set including multi-temporal multi-frequency polarimetric SAR measurements and ground truth. This paper presents some significant results obtained over an agricultural flat area within the Montespertoli site, where intensive ground measurements were carried out. The results are critically discussed with special regard to the information associated with polarimetric data

    Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato (Solanum lycopersicum L.) in a Soilless Substrate

    Get PDF
    Biochar soil amendment can improve growing medium water and nutrient status and crop productivity. A pot experiment was conducted using Solanum lycopersicum var. cerasiforme plants to investigate the effects of biochar amendment (20% application rate) on a soilless substrate, as well as on plant growth, fruit yield, and quality. During the experiment, substrate characteristics, plant morphological traits, and root and leaf C/N content were analyzed at three sampling points defined as early stage (36 days after germination), vegetative stage (84 days a. g.), and fruit stage (140 days a. g.). Fruit morphological traits, titratable acidity, lycopene, and solid soluble content were measured at the end of the experiment. Biochar ameliorated substrate characteristics (Nav increase of 17% and Ctot increase of 13% at the beginning of the study), resulting in a promotion effect on plant root, shoot, and leaf morphology mainly at the vegetative and fruit stages. Indeed, at these two sampling points, the biochar-treated plants had a greater number of leaves (38 and 68 at the vegetative and fruit stages, respectively) than the untreated plants (32 and 49, respectively). The biochar also increased leaf area with a rise of 26% and 36% compared with the values measured in the untreated plants. Moreover, the amendment increased twofold root length, root surface area, and root, stem, and leaf biomasses in comparison with untreated plants. Regarding plant productivity, although fruit morphology remained unchanged, biochar increased flower and fruit numbers (six times and two times, respectively), acidity (75%), lycopene (28%), and solid soluble content (16%). By unveiling promoting changes in morphological traits, fruit number, and antioxidant content occurring in cherry tomato plants growing in a biochar-treated soilless substrate, it could be possible to highlight the importance of biochar for future applications in the field for enhancing plant production and fruit quality in a sustainable agriculture framework

    Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean

    Get PDF
    Soya bean is the main protein source in poultry feed but rising prices make an alternative protein source necessary. Insects, such as the black soldier fly (Hermetia illucens), may be an attractive solution for hens, although little information is available on their effect on egg quality. The present study aims to fill this gap by testing the effect of 100% replacement of soya bean with H. illucens larva meal in the diet of Lohmann Brown Classic laying hens for 21 weeks. At the end of the trial, the eggs were characterized for parameters such as weight, colour, proximate composition of albumen and yolk, and content of carotenoids, tocopherols and cholesterol. The fatty acid profile of yolks was also determined. Hens fed the insect-based diet produced eggs (HIM group) with a higher proportion of yolk than the group fed the soya bean-based diet (SBM group). HIM was associated with redder yolks (red index 5.63 v. 1.36) than SBM. HIM yolks were richer in Îł-tocopherol (4.0 against 2.4 mg/kg), lutein (8.6 against 4.9 mg/kg), ÎČ-carotene (0.33 against 0.19 mg/kg) and total carotenoids (15 against 10.5 mg/kg) than SBM yolks. The fatty acid composition of HIM yolks was almost identical to that of SBM yolks. Finally, HIM yolks contained 11% less cholesterol than SBM yolks. These results suggest that H. illucens larva meal is a suitable total substitute for soya bean meal in the diet of Lohmann Brown Classic laying hens. A sustainable alternative to the plant protein source therefore seems feasible

    Chemical, biochemical and microbiological properties of soils from abandoned and extensively cultivated olive orchards

    Get PDF
    The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical and microbiological properties in a soil of a Southern olive grove abandoned since 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization). Soil organic matter, total nitrogen and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of ÎČ-glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the BiologÂź method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities

    Development of a compact and low-cost weather station for renewable energy applications

    Get PDF
    This paper describes the development of a weather station integrating several sensors which allows the measurement and data storage of the following environmental parameters: solar irradiance, temperature, humidity, wind speed, and wind direction. The collected data is later transferred to a mobile device, where it is stored in a database and processed in order to be visualized and analyzed by the user. For such purpose, a dedicated mobile app was developed and presented along the paper. The weather station also integrates small solar photovoltaic modules of three different technologies: polycrystalline, monocrystalline and amorphous silicon. Based on that, the weather station also collects information that may be employed to help the user in determining the most suitable solar photovoltaic technology for installation in a particular location. The developed system uses a Bluetooth Low Energy (BLE) wireless network to transfer the data to the mobile device when the user approaches the weather station. The system operation was validated through experimental tests that encompass all the main developed features, from the data acquisition in the weather station, to the visualization in the mobile device.- (undefined

    Fate of conjugated natural and synthetic steroid estrogens in crude sewage and activated sludge batch studies

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es801952h.Steroids are excreted from the human body in the conjugated form but are present in sewage influent and effluent as the free steroid, the major source of estrogenic activity observed in water courses. The fate of sulfate and glucuronide conjugated steroid estrogens was investigated in batch studies using activated sludge grown on synthetic sewage in a laboratory-scale Husmann simulation and crude sewage from the field. A clear distinction between the fate of sulfate and glucuronide conjugates was observed in both matrices, with sulfated conjugates proving more recalcitrant and glucuronide deconjugation preferential in crude sewage. For each conjugate, the free steroid was observed in the biotic samples. The degree of free steroid formation was dependent on the conjugate moiety, favoring the glucuronide. Subsequent degradation of the free steroid (and sorption to the activated sludge solid phase) was evaluated. Deconjugation followed the first order reaction rate with rate constants for 17α-ethinylestradiol 3-glucuronide, estriol 16α-glucuronide, and estrone 3-glucuronide determined as 0.32, 0.24, and 0.35 h respectively. The activated sludge solid retention time over the range of 3−9 days had 74 to 94% of sulfate conjugates remaining after 8 h. In contrast, a correlation between increasing temperature and decreasing 17α-ethinylestradiol 3-glucuronide concentrations in the activated sludge observed no conjugate present in the AS following 8 h at 22 °C Based on these batch studies and literature excretion profiles, a hypothesis is presented on which steroids and what form (glucuronide, sulfate, or free) will likely enter the sewage treatment plant.EPSR

    Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es901612v.This study investigated operational factors influencing the removal of steroid estrogens and nonylphenolic compounds in two sewage treatment works, one a nitrifying/denitrifying activated sludge plant and the other a nitrifying/denitrifying activated sludge plant with phosphorus removal. Removal efficiencies of >90% for steroid estrogens and for longer chain nonylphenol ethoxylates (NP4−12EO) were observed at both works, which had equal sludge ages of 13 days. However, the biological activity in terms of milligrams of estrogen removed per day per tonne of biomass was found to be 50−60% more efficient in the nitrifying/denitrifying activated sludge works compared to the works which additionally incorporated phosphorus removal. A temperature reduction of 6 °C had no impact on the removal of free estrogens, but removal of the conjugated estrone-3-sulfate was reduced by 20%. The apparent biomass sorption (LogKp) values were greater in the nitrifying/denitrifying works than those in the nitrifying/denitrifying works with phosphorus removal for both steroid estrogens and nonylphenolic compounds possibly indicating a different cell surface structure and therefore microbial population. The difference in biological activity (mg tonne−1 d−1) identified in this study, of up to seven times, suggests that there is the potential for enhancing the removal of estrogens and nonylphenols if more detailed knowledge of the factors responsible for these differences can be identified and maximized, thus potentially improving the quality of receiving waters.Public Utilities Board (Singapore), Anglian Water Ltd, Severn Trent Water Ltd, Thames Water Utilities Ltd, United Utilities 393 Plc and Yorkshire Water Services

    Pulsating Heat pipe only for Space (PHOS): Results of the REXUS 18 sounding rocket campaign

    Get PDF
    Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described

    Upgraded Pulsating Heat Pipe Only For Space (U-Phos): Results of the 22nd Rexus Sounding Rocket Campaign

    Get PDF
    A large tube may still behave, to a certain extent, as a capillary in a micro-gravity environment. This very basic concept is here applied to a two-phase passive heat transfer devices in order to obtain a new family of hybrid wickless heat pipes. Indeed, a Loop Thermosyphon, which usually consists of a large tube, closed end to end in a loop, evacuated and partially filled with a working fluid and intrinsically gravity assisted, may become a capillary tube in space condition and turn its thermo-fluidic behavior into a so called Pulsating Heat Pipe (PHP), or better, a Space Pulsating Heat Pipe (SPHP). Since the objective of the present work is to experimentally demonstrate the feasibility of such a hybrid device, a SPHP has been designed, built, instrumented and tested both on ground and microgravity conditions on the 22nd ESA REXUS Sounding Rocket Campaign. Ground tests demonstrate that the device effectively work as a gravity assisted loop thermosyphon, whether the sounding rocket data clearly reveal a change in the thermal hydraulic behavior very similar to the PHP. Since a microgravity period of approximately 120s is not sufficient to reach a pseudo steady state regime, further investigation on a longer term weightless condition is mandatory
    • 

    corecore