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Abstract: Biochar soil amendment can improve growing medium water and nutrient status and crop
productivity. A pot experiment was conducted using Solanum lycopersicum var. cerasiforme plants to
investigate the effects of biochar amendment (20% application rate) on a soilless substrate, as well
as on plant growth, fruit yield, and quality. During the experiment, substrate characteristics, plant
morphological traits, and root and leaf C/N content were analyzed at three sampling points defined
as early stage (36 days after germination), vegetative stage (84 days a. g.), and fruit stage (140 days
a. g.). Fruit morphological traits, titratable acidity, lycopene, and solid soluble content were measured
at the end of the experiment. Biochar ameliorated substrate characteristics (Nav increase of 17% and
Ctot increase of 13% at the beginning of the study), resulting in a promotion effect on plant root,
shoot, and leaf morphology mainly at the vegetative and fruit stages. Indeed, at these two sampling
points, the biochar-treated plants had a greater number of leaves (38 and 68 at the vegetative and fruit
stages, respectively) than the untreated plants (32 and 49, respectively). The biochar also increased
leaf area with a rise of 26% and 36% compared with the values measured in the untreated plants.
Moreover, the amendment increased twofold root length, root surface area, and root, stem, and
leaf biomasses in comparison with untreated plants. Regarding plant productivity, although fruit
morphology remained unchanged, biochar increased flower and fruit numbers (six times and two
times, respectively), acidity (75%), lycopene (28%), and solid soluble content (16%). By unveiling
promoting changes in morphological traits, fruit number, and antioxidant content occurring in cherry
tomato plants growing in a biochar-treated soilless substrate, it could be possible to highlight the
importance of biochar for future applications in the field for enhancing plant production and fruit
quality in a sustainable agriculture framework.

Keywords: amendment; fruit quality; physicochemical characteristics; plant morphology;
sustainable agriculture

1. Introduction

Global demand for crops is connected to a strong environmental impact mainly
due to habitat fragmentation and land clearing as well as fertilization uses polluting
both water and terrestrial ecosystems [1]. Therefore, in the future, it will be crucial to
use new methods and technologies to achieve great agricultural yields with low global
environmental impacts.

Among several new strategies, biochar could be used in a sustainable agriculture
context because, so far, it has been demonstrated that its application in soil significantly
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changes the most physicochemical properties together with plant traits [2]. Biochar is a solid
material obtained from a pyrolysis process that performs a thermochemical transformation
of biomass at high temperatures and in total or partial absence of oxygen, dramatically
reducing greenhouse gas emissions [3]. In particular, biochar has been shown to increase
both soil carbon and water content as well as macro aggregates, electrical conductivity,
pH, total nitrates/nitrites, ammonia, nitrogen [4–6], extractable phosphorus, and cation-
exchange capacity [7]. Furthermore, due to its skeletal-sponge structure, biochar reduces
soil leaching of ammonium [6] and improves rhizosphere microbial communities and
activities with particular regard to both cellulose-degrading and nitrogen-fixing bacteria [8].
All these findings highlight that biochar enhances important functions, such as soil carbon
sequestration and nitrogen soil retention, becoming a good technological product for
future sustainable agriculture [1]. No less important is the possibility to use biochar as
an alternative container substrate component to commonly used substrates, such as peat
moss, vermiculite, perlite, bark, and compost, which are costly both economically and
environmentally [9,10]. Indeed, the biochar influence in soilless substrates has been studied
and reviewed on several plant species, causing changes in different soil properties [11,12].
Biochar caused pH adjustment [13] and higher cation-exchange capacity with greater
potassium retention and availability in a soilless substrate in [10]. Tomato and marigold
plants showed improved growth when biochar was incorporated in a peat moss substrate
in [14], and a promoting physiological effect and higher fruit yield were observed in pea
plants grown in a similar substrate in [15].

Although changes in soil characteristics due to the biochar application seem to have
a generally positive trend, with a mean yield increase of 10%, averaging different crops,
soils, and climates [16], the results of the biochar effects on crop development are still
inconsistent [17]. This is due to various factors that characterize biochar, such as the starting
parental material, pyrolysis conditions, and soil physicochemical characteristics [18].

Tomato plants (Solanum lycopersicum L.) in the Mediterranean region are optimally
grown in passive solar greenhouses on well-drained, sandy loamy soils with pH values
ranging between 6 and 7. Tomato is a plant species of great commercial importance
worldwide [19]. Indeed, tomato is the most consumed non-starchy vegetable with a
global production of about 164 million tons (t) of fresh fruit harvested on a 4.7 million
hectare (ha) surface [20]. From a health point of view, a large body of research supports
an inverse relationship between consuming tomatoes and tomato products and the risk of
certain cancers as well as cardiovascular disease, osteoporosis, ultraviolet-light-induced
skin damage, and cognitive dysfunction [21]. Indeed, tomatoes are the most significant
source of dietary lycopene, a powerful antioxidant, and in general, secondary metabolites,
such as cis-lycopene, trans-lycopene, β-carotene, and other carotenoids, which are directly
involved in these protective actions [22].

To date, there is still poor information on the effects of biochar on tomato plant
growth, fruit yield, and antioxidant content [23–28]. In particular, Tartaglia et al. [24] and
Guo et al. [25] recently demonstrated that biochar addition may facilitate the reduction of
farming input, being a sustainable practice for enhancing tomato plant growth, fruit quality,
and yield. Other authors [26–28] investigated the biochar supplementation in tomato
plants grown in salt-affected or contaminated soils. She et al. [26] highlighted how biochar
amendments have the potential to ameliorate salt stress and enhance tomato production.
Both Almaroai et al. [27] and Alam et al. [28] agreed that biochar application minimizes
the uptake of the toxic element, thus alleviating the health risk. Finally, Kavitha et al. [17]
reviewed contradictory results and often-incomplete datasets in various studies concerning
the effects of environmental factors, such as water availability, mineral nutrients (nitrogen,
phosphorus, potassium, and calcium), and plant growth regulators, on antioxidant content
in tomato fruits.

Given the above-mentioned multiple effects that biochar can have on soil characteris-
tics, we hypothesized that biochar-derived changes in resource supply may play a crucial
role in enhancing cherry tomato plant growth, fruit yield, and antioxidant content. To test
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this hypothesis, after assessing the effects of biochar on substrate physicochemical charac-
teristics, morphological parameters of roots, shoots, and fruits together with the number
of fruits and their antioxidant content were investigated in a time-course pot experiment.
The identification of possible relationships between any alterations of soilless substrate
physicochemical characteristics, plant growth, and fruit yield may further contribute to
elucidating the mechanisms of biochar actions and its use. In addition, the data from this
study could be used as a basis for researching the long-term effects of biochar in the field
and sustainable agriculture to increase vegetable crop yield and quality.

2. Materials and Methods
2.1. Experimental Design

Seeds of Solanum lycopersicum L. var. cerasiforme (S. l. cerasiforme; cherry tomato
average/early-ripening variety, small, round, bright red fruit in bunches, by Sementi Dotto)
were obtained from a commercial nursery (Varese, Italy). Six seeds of cherry tomato were
sown each in 9 L cylindrical pots (h 24 cm, lower Ø 21 cm, and upper Ø 26 cm), filled with
a commercial soilless substrate. After germination, only one seedling was left to grow for
each pot.

Two treatments were set up: (i) the control condition (C) characterized by a mixture of
peat, silica sand, and bark humus (1:2:1), and (ii) the biochar treatment prepared with the
mix of peat, silica sand, bark humus, and biochar (1:2:1:1). Thirty pots for each treatment
were then placed in a growth chamber under the following conditions: day/night temper-
ature of 22/17 ◦C, air humidity around 60%–70%, 16 h light/8 h dark cycle with a light
intensity of about 500 µmol·m−2·s−1 at pot height (light meter sensor—HD2302.0—Delta
Ohm; Caselle di Selvazzano, Italy). All potted seedlings were watered to saturation with
1.2 L tap water every 2 days, and no fertilizer was added.

Ten biochar-treated plants (B) and 10 untreated plants (C) were collected at each
of three sampling points defined as early stage (Es, 36 days after plant germination),
vegetative stage (Vs, 84 days after plant germination), and fruit stage (Fs, 140 days after
plant germination) for a total of 60 cherry tomato plants.

2.2. Biochar and Substrate Analysis

The biochar was provided by Romagna Carbone s.n.c. (Bagnacavallo, Italy), produced
from orchard pruning biomass, and slow pyrolyzed at a temperature of 500 ◦C with a
residence time of 3 h. The main physicochemical properties of the biochar were determined
as described in a previous study [15] and are presented in Table 1.

Table 1. Biochar physicochemical characteristics. Each value represents the mean (n = 8) ± 1 SE.

Parameter Unit Biochar

pH − 9.7 ± 0.1
EC dS·m−1 7.5 ± 0.4

CEC cmol(+)·kg−1 21.3 ± 0.3
Ntot g·kg−1 9.1 ± 0.2
Nav mg·kg−1 30 ± 0.4
Ptot mg·kg−1 1221.9 ± 21.3
Pav mg·kg−1 217 ± 3.0
Ctot g·kg−1 778.1 ± 0.1
Corg g·kg−1 705.6 ± 0.1

H g·kg−1 45.3 ± 0.2
H/Corg − 0.76

pH: 1:5 v/v biochar/water solution; EC = electrical conductivity 1:5 v/v biochar/water solution; CEC = cation
exchange capacity; Ntot = total nitrogen; Nav = available nitrogen; Ptot = total phosphorus; Pav = available
phosphorus; Ctot = total carbon; Corg = organic carbon; H = hydrogen.

Substrate physicochemical characteristics, in the C and B conditions, were determined
at the beginning of the experiment (T0) and the Es, Vs, and Fs sampling points.
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Eight substrate samples were collected on the surface, in the middle (18 cm), and at
the bottom of the pots (32 cm). Once released from roots, substrate samples were mixed in
one bulk sample, air-dried until constant weight, passed through a 2 mm sieve, and stored
at 4 ◦C in the dark until processed.

pH and EC were assessed according to Conyers and Davey [29] and Rhoades [30],
respectively. Cation exchange capacity (CEC) was assessed according to Mehlich [31] using
BaCl2. Total nitrogen (Ntot) and total carbon (Ctot) were determined by dry combustion [32]
using a CHN elemental analyzer (Carlo Erba Instruments, Mod 1500, Series 2, Cornaredo,
Italy). Available nitrogen (Nav) was determined by a modified Kjeldahl procedure using De-
varda’s alloy [33], as a reducing agent to convert NO3 and NO2 into NH4

+, and subsequent
Kjeldahl digestion. Total phosphorus (Ptot) content was determined by spectrophotometry
(UV-1601 Shimadzu, Kyoto, Japan) according to the test method described by Bowman [34].
Available phosphorus (Pav) was extracted by a NaHCO3 solution at pH 8.5 and evaluated
by spectrophotometry according to Olsen et al. [35].

2.3. Plant Analysis

At each sampling point (Es, Vs, and Fs), 10 replicates were used for measuring morpho-
logical traits of leaves, stems, and roots, while 6 replicates were used for determining the
C/N content of leaves and roots. In particular, all leaves were detached from the branches
and counted to have leaf number (no.). Afterward, to measure leaf area (cm2), leaves were
scanned (400 dpi) using a portable scanner (Epson Perfection V600), and scanned images
were processed with WinRHIZO software (Pro V. 2007d, Regent Instruments Inc., Ville de
Québec, QC, Canada).

Roots were washed and scanned with a calibrated flatbed scanner coupled to a lighting
system for image acquisition (Expression 10000 XL, Epson America Inc., Long Beach, CA,
USA); scanned images were analyzed by WinRHIZO software to measure root length (m)
and surface area (cm2).

Afterward, the plant tissues were separately oven-dried at 70 ◦C until constant weight
and weighed to obtain the dry mass (g) of leaves, stems, and roots.

Moreover, the determination of total carbon (Ctot) and nitrogen (Ntot) content in roots
and leaves of C and B plants was performed by a CHN elemental analyzer (PerkinElmer,
2400 Series, II CHNS/O elemental analyzer, Waltham, MA, USA). First, roots and leaves
were harvested at the Es, Vs, and Fs sampling points; finely ground in liquid nitrogen with
mortar and pestle; and then dried at 80 ◦C to eliminate humidity traces. The analyzer was
calibrated by the atropine standard, with a calibration repetition every 10 samples.

2.4. Fruit Analysis

Before fruit ripening, flower number was determined with a count (no.) for 10 repli-
cates for each treatment. To have homogeneity in fruit collection, tomato fruits were
harvested from 10 plants for each treatment at point 5 of the ripening color chart [36], and
fruit number (no.) was measured.

To evaluate fruit dry mass (g), tomato fruits were oven-dried, at 70 ◦C for 48 h,
and weighed.

Morphometric fruit parameters, such as polar and equatorial diameters (cm), epicarp
thickness (mm), and right and left mesocarp thickness (mm), were determined by scanning
fruits and analyzing the images with ImageJ software (open source https://imagej.nih.
gov/ij/ accessed on 1 March 2016).

Furthermore, fruits were homogenized (VWR Collection, VDI 12) to evaluate other
parameters. Both trans- and cis-lycopene contents were determined by extracting 6 g of
homogenate with 60 mL of hexane–methanol–acetone (2:1:1 volume) with 2.5% of BHT for
30 min at 4 ◦C in dark conditions. Subsequently, 10 mL of distilled water was added, and
the polar phase (hexane) recovered. The polar phase was subjected to spectrophotometric
reads at 472 nm (maximum absorbance peak of the trans-lycopene) and 502 nm (maximum
absorbance peak of the cis-lycopene). The titratable acidity, expressed as a percentage of

https://imagej.nih.gov/ij/
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citric acid, was measured according to the titration method at pH 8.1 with NaOH (0.1 N) [37].
The total soluble solid content, expressed as ◦Brix, was measured by a refractometer (HI
96813, Hanna Instruments, Woonsocket, RI, USA), after homogenate centrifugation at
13,000× g for 20 min at 8 ◦C [38].

2.5. Statistical Analysis

Square root or log transformations were applied to ensure normal distributions and
equal variances. Leaf, stem, and root dry mass; leaf number; leaf area; root length; and
root surface area were analyzed with a two-tailed T-test. Flower and fruit number, fruit dry
mass, polar and equatorial diameter, epicarp thickness, right and left mesocarp thickness,
trans- and cis-lycopene, titratable acidity, and total soluble solids were analyzed with
a one-way ANOVA by Bonferroni post hoc test. Both statistical tests were applied at a
significance level of 95%. Both statistical analyses were performed using SPSS 17.0 software
package (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Substrate Physicochemical Characteristics

As shown in Table 2, at the beginning of the experiment (T0), the only differences
between the untreated (C) and biochar-treated (B) substrates were found in available
nitrogen (Nav) and total carbon (Ctot) contents. In detail, the concentrations of both Nav
and Ctot were higher in the B treatment than in the C condition.

At the early-stage sampling point (Es), only the available phosphorous content (Pav)
was 11% lower in the B condition than the C untreated substrate (42.6 mg·kg−1) (Table 2).

At the vegetative-stage sampling point (Vs), the total carbon content (Ctot) was 14%
higher in the B substrate compared with the C condition (20 g·kg−1) (Table 2).

At the fruit-stage sampling point (Fs), in the B condition, on one side there was a 13%
increase in substrate cation exchange capacity (CEC) and a 19% rise of Ptot, while on the
other side, a 17% decrease in Nav concentration was observed in comparison with the C
substrate (Table 2).

In the C substrate, a decrease of 11% was registered in CEC from the Es to the Fs
sampling point (Table 2). Moreover, over time, within each treatment, there were decreases
in nutrient concentrations. In the C condition, Ntot, Nav, and Ctot contents were lower at the
Vs and Fs points in comparison with Es. In detail, Ntot decreased by 31% and 25% in Vs and
Fs in comparison with Es (16 g·kg−1), respectively (Table 2). Nav was 27% and 20% lower
in Vs and Fs compared with Es (150 mg·kg−1) (Table 2). In Vs and Fs, Ctot also decreased
by 21% and 23%, respectively (Table 2). In the same treatment (C substrate), regarding
the Ptot and Pav concentrations, the highest values were found at the Es sampling point
(545 and 42.6 mg·kg−1, respectively), followed by values measured at the Vs sampling
point (440 and 38.7 mg·kg−1, respectively) and Fs (347 and 23.9 mg·kg−1, respectively)
(Table 2).

In the B condition, Ntot and Pav contents were lower by 29% and 27% at the Fs sampling
point in comparison with Es, respectively (Table 2). Ptot was 19% and 23% lower in Vs and
Fs compared with Es (534 mg·kg−1) (Table 2). In the B treatment, regarding the Nav and
Ctot concentrations, the highest values were found at the Es sampling point (140 mg·kg−1

and 25.6 g·kg−1, respectively), followed by values measured at the Vs sampling point
(100 mg·kg−1 and 23.0 g·kg−1, respectively), and the lowest contents were measured at Fs
(100 mg·kg−1 and 20.1 g·kg−1, respectively) (Table 2).
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Table 2. Physicochemical characteristics of untreated (C) and biochar-treated (B) substrates were determined at the beginning of the experiment (T0) and early stage
(Es, 36 days after plant germination), vegetative stage (Vs, 84 days after plant germination), and fruit stage (Fs, 140 days after plant germination). Letters a and b
indicate a statistically significant difference (p < 0.05) between the two treatments inside each sampling point. Letters x, y, and z indicate a statistically significant
difference (p < 0.05) among the Es, Vs, and Fs sampling points for each treatment. (n = 8 ± SE).

Parameter
pH EC (dS·m−1) CEC (cmol(+)·kg−1) Ntot (g·kg−1) Nav (mg·kg−1) Ptot (mg·kg−1) Pav (mg·kg−1) Ctot (g·kg−1)

T0 C 6.6 ± 0.1 a 0.9 ± 0.3 a 18 ± 0.9 a 13 ± 1.2 a 120 ± 5 b 457 ± 17 a 40.4 ± 2.2 a 23.0 ± 0.6 b

B 6.7 ± 0.1 a 0.9 ± 0.3 a 19 ± 0.9 a 15 ± 1.4 a 140 ± 5 a 484 ± 18 a 42.4 ± 2.3 a 26.0 ± 0.6 a

Es C 7.4 ± 0.1 ax 0.8 ± 0.3 ax 18 ± 0.9 ax 16 ± 1.5 ax 150 ± 17 ax 545 ± 20 ax 42.6 ± 1.5 ax 25.6 ± 0.6 ax

B 7.4 ± 0.1 ax 1.1 ± 0.4 ax 19 ± 0.9 ax 14 ± 1.3 ax 140 ± 6 ax 534 ± 20 ax 37.9 ± 1.3 bx 25.6 ± 0.6 ax

Vs C 7.4 ± 0.1 ax 0.9 ± 0.3 ax 17 ± 0.8 axy 11 ± 1.1 ay 110 ± 5 ay 440 ± 17 ay 38.7 ± 1.4 ay 20.1 ± 0.5 by

B 7.5 ± 0.1 ax 1.2 ± 0.4 ax 18 ± 0.9 ax 12 ± 1.2 axy 110 ± 4 ay 432 ± 16 ay 38.7 ± 1.3 ax 23.0 ± 0.6 ay

Fs C 7.5 ± 0.1 ax 1.0 ± 0.4 ax 16 ± 0.8 by 12 ± 1.2 ay 120 ± 5 ay 347 ± 13 bz 23.9 ± 0.8 az 19.8 ± 0.5 ay

B 7.5 ± 0.1 ax 1.3 ± 0.4 ax 18 ± 0.8 ax 10 ± 0.9 ay 100 ± 4 bz 412 ± 15 ay 27.6 ± 0.9 ay 20.1 ± 0.5 az

EC = electrical conductivity; CEC = cation exchange capacity; Ntot = total nitrogen; Nav = available nitrogen; Ptot = total phosphorous; Pav = available phosphorous; Ctot = total carbon.
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3.2. Cherry Tomato Plant Characteristics
3.2.1. Morphological Traits

Leaf number and area, root length, and surface area increased throughout the experi-
ment for both the untreated and biochar-treated plants (Figure 1). Except as observed at
Es, both at the Vs and Fs sampling points, the biochar-treated plants (B) showed higher
values of these parameters compared with the untreated plants (C) (Figure 1). In detail,
at the Vs and Fs sampling points, the B plants had a greater number of leaves (38 and 68,
respectively) than the C cherry tomato plants (32 and 49, respectively) (Figure 1a). The
biochar also increased the leaf area with a rise of 26% and 36% compared with the values
measured in the C plants (15,775 and 17,949 cm2 at Vs and Fs, respectively) (Figure 1b).
In the B plants, at Vs and Fs, the amendment use increased 1.6- and 2-fold both the root
length and root surface area in comparison with the untreated plants of S. l. cerasiforme
(Figure 1c,d). In the C plants, the values for root length were 51 and 153 m (Figure 1c),
and the values for root surface area were 385 and 1474 cm2, respectively, at the Vs and Fs
sampling points (Figure 1d).
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Figure 1. Leaf number (a) and area (b), root length (c), and surface area (d) were measured at the early
stage (Es, 36 days after plant germination), vegetative stage (Vs, 84 days after plant germination), and
fruit stage (Fs, 140 days after plant germination) of Solanum lycopersicum var. cerasiforme plants grown
on the two different substrates (solid line, plants in the untreated substrate; dashed line, plants in
the biochar-treated substrate). Letters indicate statistically significant differences between the two
treatments inside each sampling point (p < 0.05) (n = 10 ± SE).

As reported in Figure 2, while leaf dry mass showed a linear growth (Figure 2a), stem
and root biomass showed an exponential growth (Figure 2b,c). Nevertheless, they had
the same trend, and at the Es sampling point, the different organ dry biomass did not
show significant differences among the untreated and biochar-treated plants (Figure 2a–c).
Differently, at Vs and Fs, the leaf, stem, and root dry masses were higher in the biochar-
treated plants than in the untreated ones (Figure 2a–c). Specifically, at both sampling points
(Vs and Fs) and for all the plant organs (leaves, stems, and roots), the biochar amendment
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determined a twofold increase in dry biomasses in comparison with the untreated plants
(Figure 2a–c).
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Figure 2. Leaf (a), stem (b), and root (c) dry mass measured at the early stage (Es, 36 days after plant
germination), vegetative stage (Vs, 84 days after plant germination), and fruit stage (Fs, 140 days
after plant germination) of Solanum lycopersicum var. cerasiforme plants grown on the two different
substrates (solid line, plants in the untreated substrate; dashed line, plants in the biochar-treated
substrate). Letters indicate statistically significant differences between the two treatments inside each
sampling point (p < 0.05) (n = 10 ± SE).

3.2.2. Root and Leaf Carbon and Nitrogen Content

At the root level, the biochar positively affected only total nitrogen content (Ntot) at
the Fs sampling point only (Table 3). Meanwhile, in leaves, the amendment negatively
affected total carbon content (Ctot) only at the Es sampling point (Table 3). In detail, root
Ntot increased by 31% in the biochar-treated cherry tomato plants (B) in comparison with
the untreated plants (C) (1.28%). Moreover, the biochar induced a 10% decrease in leaf Ctot
compared with the C plants (36.04%) (Table 3).

Table 3. Measurements of total nitrogen (Ntot) and total carbon (Ctot) were performed on roots and
leaves of untreated (C) and biochar-treated (B) Solanum lycopersicum var. cerasiforme plants at the early
stage (Es, 36 days after plant germination), vegetative stage (Vs, 84 days after plant germination), and
fruit stage (Fs, 140 days after plant germination). Letters a and b indicate a statistically significant
difference (p < 0.05) between the two treatments inside each sampling point. Letters x, y, and z
indicate a statistically significant difference (p < 0.05) among the Es, Vs, and Fs sampling points for
each treatment. (n = 6 ± SE).

Characteristic

Root Ntot (%) Root Ctot (%) Leaf Ntot (%) Leaf Ctot (%)

Es
C 3.39 ± 0.07 ax 37.85 ± 0.70 az 6.10 ± 0.03 ax 36.04 ± 1.45 ax
B 3.68 ± 0.10 ax 37.77 ± 0.25 ay 6.93 ± 0.01 ax 32.49 ± 1.90 bx

Vs
C 2.22 ± 0.10 ay 40.53 ± 0.15 ay 3.64 ± 0.45 ay 35.37 ± 3.55 ax
B 2.08 ± 0.22 ay 40.21 ± 0.70 ay 4.50 ± 0.40 ay 36.19 ± 2.85 ax

Fs
C 1.28 ± 0.005 az 42.87 ± 0.30 ax 1.45 ± 0.27 az 34.97 ± 1.50 ax
B 1.68 ± 0.16 bz 41.32 ± 0.75 ax 1.88 ± 0.30 az 35.93 ± 1.90 ax

As shown in Table 3, at the root level, in both untreated and biochar-treated plants,
there was a decrease in Ntot and an increase in Ctot over time.

In detail, in the untreated (S. l. cerasiforme) plants, Ntot content decreased by 35% at
the Vs sampling point and by 62% at the Fs sampling point compared with the Es sampling
point (3.39%). Instead, the increase in root Ctot of the C plants was 7% and 13% at the Vs
and Fs sampling points compared with Es (37.85%), respectively (Table 3).

In the biochar-treated plants, root Ntot decreased by 43% and 54% at the Vs and Fs
sampling points compared with the Es sampling point, respectively. These same plants had
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9% higher root Ctot content at the Fs sampling point than at Es (Table 3). Moreover, at the
root level, across the entire duration of the experiment, the untreated and biochar-treated
plants had the same reduction in Ntot (97%).

In the leaves of both plants grown in the untreated and biochar-treated substrate,
no significant difference was recorded for Ctot content over time. Instead, there was a
significant decrease in the Ntot concentrations measured at the three sampling points
(Table 3). Specifically, in both untreated and biochar-treated S. l. cerasiforme plants, the
leaf concentration of Ntot was reduced 1.6 and 4 times at the Vs and Fs sampling points,
respectively, compared with that reported at Es (in the C plants, the concentration was
6.10%, and in the B plants, it was 6.93%) (Table 3).

3.2.3. Fruit Characteristics

Both flower and fruit number, trans- and cis-lycopene, titratable acidity, and total
soluble solid content were higher in the biochar-treated S. l. cerasiforme than in the untreated
plants (Figure 3a,b,i–l). On the contrary, for fruit dry mass, polar and equatorial diameter,
epicarp thickness, and right and left mesocarp thickness, no difference was detected
(Figure 3c–h).

1 
 

 

Figure 3. Flower number (a), fruit number (b), dry mass (c), polar (d) and equatorial diameter (e),
epicarp thickness (f), right mesocarp (g) and left mesocarp thickness (h), trans-lycopene (i), cis-
lycopene (j), titratable acidity (k), and total soluble solid content (l) measured for Solanum lycopersicum
var. cerasiforme plants grown on the two different substrates (white box, plants in the untreated
substrate; gray box, plants in the biochar-treated substrate). Letters indicate statistically significant
differences (p < 0.05) (n = 10 ± SE).

Moreover, the biochar increased the number of flowers and fruits of S. l. cerasiforme
plants treated with the soil conditioner six times and two times, respectively, compared
with the untreated plants (Figure 3a,b). In addition, cherry tomato plants grown on the B
substrate had 30%, 25%, 75%, and 16% higher trans- and cis-lycopene and titratable acidity
and total soluble solid content, respectively, when compared with plants grown on the C
substrate (Figure 3i–l).
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4. Discussion

As reported in several works, biochar, used as an amendment, could have a promoting
effect on plant growth and productivity as an indirect consequence of its positive effect on
growth medium parameters (e.g., water holding capacity and pH enhancement, increased
nutrient availability) [39–41]. Indeed, first, when biochar is applied to a growth substrate,
it can retain water, thanks to its particularly porous internal structure [42]. Second, when
biochar is used, research findings indicate significant increases in pH, organic carbon, and
exchangeable cations [43]. Growing medium pH is an important characteristic in terms
of nutrient availability and, in turn, plant growth. Growing substrates with a high cation
exchange capacity can hold or bind nutrient cations; thus, nutrients are retained rather
than leached and, therefore, more available for uptake by plants [44]. Biochar addition to
growth media is currently being considered as a means to avoid the leaching of nutrients,
which can deplete fertility, hasten substrate acidification, raise the cost of fertilizer for
farmers, and reduce the yield of crops [45]. Thus, the use of biochar as an amendment may
improve the nutrient supply to plants. Moreover, because of its porous nature, high surface
area, and ability to adsorb soluble organic matter and inorganic nutrients, biochar also
provides a suitable habitat for microbes important in releasing plant-growth-promoting
substances [46].

Tomato plants grow optimally in both the field and greenhouse, achieving maximum
production levels in soilless culture [11]. One of the most used substrate constituents for
soilless vegetable cultivation is peat [12]. However, peat is a limited resource with huge
demand, and its extraction results in deleterious environmental impacts [47]. Therefore,
there is a growing interest in replacing peat with other soilless substrates, and biochar
could entirely or partly substitute peat as a plant-growing constituent to produce vegeta-
bles [10]. Indeed, biochar used as a growth medium for soilless cultivation appears to
offer a concrete opportunity to increase the economic and environmental sustainability
of intensive cropping systems through the replacement of nonrenewable materials [11].
However, a few pieces of research [48–52] have been conducted to evaluate/investigate the
potential of biochar amendment in enhancing tomato plant growth and yield in view of
sustainable agriculture.

Therefore, we aimed to assess the potential use of biochar as a growing medium for
soilless S. l. cerasiforme production by monitoring substrate physicochemical properties and
plant characteristics at three different sampling points (early stage, Es; vegetative stage,
Vs; and fruit stage, Fs). We found an increase in cation exchange capacity (CEC) in the
biochar-treated substrate at the Fs sampling point only, and this might probably be due to
an oxidation increase in this specific growth stage. Indeed, Liang et al. [53] demonstrated
that biochar particles are subjected to oxidation processes, contributing to the increase in
both surface charge density and, in turn, CEC. Moreover, biochar is known to have the
potential to reduce nutrient/cation leaching in growing media, consequently leading to an
increase in CEC [43,54,55].

Besides that, the higher content of available nitrogen (Nav) measured at the Fs sampling
point in the untreated substrate could be attributable to a higher microbial activity that
normally characterizes the biochar-treated substrate, which leads to a major reduction
of Nav [17]. According to this, the high total carbon (Ctot) content in the biochar-treated
substrate at the Es sampling point could be attributable to the early and high microbial
activity producing organic acids in the growing medium [56]. Although many studies
report a positive biochar effect on phosphorous availability (Pav) [57,58], in our study,
lower content in the biochar-treated substrate, at the Es sampling point, was detected.
This effect could be due to the biochar’s ability to bring Pav into the substrate, which is
dependent on the amount and form of phosphorous available in the substrate and biochar
type [59]. Furthermore, our results follow those of other studies highlighting that the
biochar amendment was a modest source of phosphorous for plant production [12,60].
Nevertheless, this observation was confirmed only at the early stage, since at the Fs
sampling point, the biochar application led to an increase in total phosphorous (Ptot).
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Over time, in both the untreated and biochar-treated substrates, there was a decrease
in total and available concentrations of nutrients (carbon, nitrogen, and phosphorus). This
decrease found between the Es and Fs sampling point might be related to the potential
increase in uptake and accumulation of these nutrients by cherry tomato plants for en-
hancing growth and development. Indeed, our findings showed that the biochar-treated
plants had higher values of all morphological traits measured for all organs than those
plants grown in the untreated condition. In particular, these ameliorations were observed
later in the cherry tomato plant phenology during Vs and Fs. These findings are in line
with studies reporting a lack of biochar influence on the early stages of plant growth for
Triticum aestivum, Raphanus sativus, and Sorghum bicolor (respectively, [61,62]). For instance,
Free et al. [63] showed that maize’s early growth was not significantly affected by biochar
produced from a range of feedstock sources.

Massa et al. [11] and Choi et al. [64] observed a biomass increase for tomato plants
when peat and pine bark were replaced by biochar by up to 40% in a soilless growing
medium. In our study, although the 20% addition of biochar replaced peat, humus, and
silica sand for 5%, 5%, and 10% respectively, the better cherry tomato plant growth ob-
served at the Vs and Fs sampling points likely resides in positive interaction between
biochar and plant nutrition, as also proposed in previous studies on radish, pepper, and
tomato [45,48,65]. Indeed, biochar’s ability to improve crop growth is reported to be a
consequence of a potential extra nutrient budget [23] and/or an indirect consequence of
improved physicochemical and biological characteristics of the biochar-treated growing
medium [45]. Considering biochar properties and abilities [11,37], its addition to the soilless
substrate might have led to more nutrients potentially available to the plants than in the
untreated substrate. This higher nutrient content due to biochar presence [66,67] may be
related to the observed increment of root length and surface area [68]. In particular, at
the Fs sampling time, the improvement of root growth could be attributable to the fruit
ripening stage during which plants use most of their energy to generate new roots for a
major nutrient uptake [68,69].

Several mechanisms have been suggested to explain the positive effects of biochar on
crop growth and yield, varying from physicochemical and biological changes [23,70] to
macro- and micronutrient immobilization [71] in the growing substrate [37]. For instance,
improvements in fruit yield and quality, such as higher fruit acidity, antioxidant compound
content, organoleptic qualities, and their content in phytochemical compounds, are all
well-documented effects in tomatoes grown on substrates with higher nutrient availability
in the root zone due to biochar application [23,72–74]. Accordingly, in the current study,
the biochar-treated plants showed a higher number of flowers and fruits, although the
mean fruit biomass and morphology remained unchanged. Additionally, higher values of
trans- and cis-lycopene, total soluble solids, and titratable acidity were found in the biochar-
treated plants when compared with the untreated ones. In our research, the promotion
of fruit quantity and quality could be attributable to the high Ptot content in the biochar-
treated substrate and the high Ntot concentration in roots of the biochar-treated plants
measured at the Fs sampling point. Indeed, according to other reports, there might be a
relationship between the phosphorous and nitrogen contents in both growing substrates
and plant tissues and the promotion of fruit production by improving the vegetative and
reproductive properties of tomato plants [75–77]. Our results about cherry tomato fruit
quality are also in agreement with those obtained by Almaroai et al. [27], Akhtar et al. [69],
and Hameeda et al. [77], who reported increased values of lycopene, titratable acidity, and
total soluble solids when biochar was used as a soil amendment.

Other important factors, besides the substrate nutrient concentration, related to the
biochar improvement of fruit yield and tomato quality are the increase in substrate microbial
biomass, nutrient uptake, plant tissue potassium concentration [45], and leaf photosynthetic
activity [78,79]. Therefore, although in the current study these traits were not measured,
we might speculate that the higher carbon availability observed in the biochar-treated
substrate at the beginning of the experiment may have enhanced the microbial activity,
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resulting in greater nitrogen demand and promoting immobilization and recycling of
nitrate (NO3

−) [65]. In addition, the higher Ntot and potassium cation concentration in
the root zone of the biochar-treated plants may have led, respectively, to the increase in
lycopene content [11], acidity, and soluble solid content of tomato bulks [79].

5. Conclusions

In the present study, the biochar addition to a soilless substrate significantly improved
Solanum lycopersicum var. cerasiforme plant development through the enhancement of
morphological and chemical traits during the vegetative and fruit stages. Moreover, the
biochar-treated cherry tomato plants had a higher fruit number and antioxidant content
as compared with the untreated plants. The improvement of these plant characteristics
was coupled with the increase in nutrient availability in the biochar-based substrate. There-
fore, the present work concurs with previous scientific reports underscoring that biochar
amendment has a great potential for improving tomato yield and fruit quality through the
enhancement of the growing medium’s physical and chemical characteristics. In conclu-
sion, we may assert that wood-based biochar can be considered a material to be added to
soilless cultivations in the framework of sustainable agriculture, particularly for reducing
the use of peat in growing media. Finally, although our findings refer to a short-term potted
experiment, they give hints toward biochar use for long-term open-field tomato cultivation.
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