692 research outputs found
Pion Content of the Nucleon as seen in the NA51 Drell-Yan experiment
In a recent CERN Drell-Yan experiment the NA51 group found a strong asymmetry
of and densities in the proton at . We interpret
this result as a decisive confirmation of the pion-induced sea in the nucleon.Comment: 10 pages + 3 figures, Preprint KFA-IKP(TH)-1994-14 .tex file. After
\enddocument a uu-encodeded Postscript file comprising the figures is
appende
Low wave-functions of pions and kaons and their parton distribution functions
We study the low wave-functions of pions and kaons as an expansion in
terms of hadron-like Fock state fluctuations. In this formalism, pion and kaon
wave-functions are related one another. Consequently, the knowledge of the pion
structure allows the determination of parton distributions in kaons. In
addition, we show that the intrinsic (low ) sea of pions and kaons are
different due to their different valence quark structure. Finally, we analize
the feasibility of a method to extract kaon's parton distribution functions
within this approach and compare with available experimental data.Comment: 13 pages, 3 postscript figures include
Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon
There are two mechanisms for the generation of an asymmetry between the
strange and anti-strange quark distributions in the nucleon: nonperturbative
contributions originating from nucleons fluctuating into virtual baryon-meson
pairs such as and , and perturbative contributions
arising from gluons splitting into strange and anti-strange quark pairs. While
the nonperturbative contributions are dominant in the large- region, the
perturbative contributions are more significant in the small- region. We
calculate this asymmetry taking into account both nonperturbative and
perturbative contributions, thus giving a more accurate evaluation of this
asymmetry over the whole domain of . We find that the perturbative
contributions are generally a few times larger in magnitude than the
nonperturbative contributions, which suggests that the best region to detect
this asymmetry experimentally is in the region . We find that
the asymmetry may have more than one node, which is an effect that should be
taken into account, e.g. for parameterizations of the strange and anti-strange
quark distributions used in global analysis of parton distributions.Comment: 14 pages, 4 figures, figures comparing theoretical calculations with
NNPDF global analysis added, accepted for publication in EPJ
Re-evaluation of the LHC potential for the measurement of Mw
We present a study of the LHC sensitivity to the W boson mass based on
simulation studies. We find that both experimental and phenomenological sources
of systematic uncertainties can be strongly constrained with Z measurements:
the lineshape is robustly predicted, and its analysis provides an accurate
measurement of the detector resolution and absolute scale, while the
differential cross-section analysis absorbs most of the strong interaction
uncertainties. A sensitivity \delta Mw \sim 7 \MeV for each decay channel (W
--> e nu, W --> mu nu), and for an integrated luminosity of 10 fb-1, appears as
a reasonable goal
Band-gaps in long Josephson junctions with periodic phase-shifts
We investigate analytically and numerically a long Josephson junction on an infnite domain, having arbitrary periodic phase shift of k, that is, the so-called 0-k long Josephson junction. The system is described by a one-dimensional sine-Gordon equation and has relatively recently been proposed as artificial atom lattices. We discuss the existence of periodic solutions of the system and investigate their stability both in the absence and presence of an applied bias current. We find critical values of the phase-discontinuity and the applied bias current beyond which a solution switches to its complementary counterpart. Due to the periodic discontinuity in the phase, the system admits regions of allowed and forbidden bands. We perturbatively investigate the Arnold tongues that separate the region of allowed and forbidden bands, and discuss the effect of an applied bias current on the band-gap structure. We present numerical simulations to support our analytical results
Transversity distributions in the nucleon in the large-N_c limit
We compute the quark and antiquark transversity distributions in the nucleon
at a low normalization point of 600 MeV in the large- limit, where the
nucleon can be described as a soliton of an effective chiral theory (chiral
quark-soliton model). The flavor-nonsinglet distributions, and , appear in leading order
of the -expansion, while the flavor-singlet distributions, and , are non-zero only in
next-to-leading order. The transversity quark and antiquark distributions are
found to be significantly different from the longitudinally polarized
distributions and , respectively, in contrast to the prediction of the naive
non-relativistic quark model. We show that this affects the predictions for the
spin asymmetries in Drell-Yan pair production in transversely polarized pp and
ppbar collisions.Comment: 45 pages, 16 figure
Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model (I) -- phenomenological predictions --
Theoretical predictions are given for the light-flavor sea-quark
distributions including the strange quark ones on the basis of the flavor SU(3)
version of the chiral quark soliton model. Careful account is taken here of the
SU(3) symmetry breaking effects due to the mass difference between the strange
and nonstrange quarks. This effective mass difference between the
strange and nonstrange quarks is the only one parameter necessary for the
flavor SU(3) generalization of the model. A particular emphasis of study is put
on the {\it light-flavor sea-quark asymmetry} as exemplified by the observables
as well as on the {\it particle-antiparticle asymmetry} of
the strange quark distributions represented by etc. As for the unpolarized
sea-quark distributions, the predictions of the model seem qualitatively
consistent with the available phenomenological information provided by the NMC
data for , the E866 data for , the CCFR data and Barone et al.'s fit for etc. The
model is shown to give several unique predictions also for the spin-dependent
sea-quark distribution, such that and , although the verification
of these predictions must await more elaborate experimental investigations in
the near future.Comment: 36 pages, 20 EPS figures. The revised version accepted for
publication in Phys. Rev. D. The title has been changed, and the body of the
paper has been divided into two pieces, i.e.. the present one which discusses
the main phenomenological predictions of the model and the other one which
describes the detailed formulation of the flavor SU(3) chiral quark soliton
model to predict light-flavor quark and antiquark distribution functions in
the nucleo
Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding
Within the broad class of multiferroics (compounds showing a coexistence of
magnetism and ferroelectricity), we focus on the subclass of "improper
electronic ferroelectrics", i.e. correlated materials where electronic degrees
of freedom (such as spin, charge or orbital) drive ferroelectricity. In
particular, in spin-induced ferroelectrics, there is not only a {\em
coexistence} of the two intriguing magnetic and dipolar orders; rather, there
is such an intimate link that one drives the other, suggesting a giant
magnetoelectric coupling. Via first-principles approaches based on density
functional theory, we review the microscopic mechanisms at the basis of
multiferroicity in several compounds, ranging from transition metal oxides to
organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic
frameworks, MOFs)Comment: 22 pages, 9 figure
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
- âŠ