24,891 research outputs found

    Analytic evaluation of display requirements for approach to landing

    Get PDF
    A pilot-vehicle-display model is used to study information and display requirements and the effects on system performance and reliability of pilot-induced randomness, wind gusts, configurational changes, etc. A brief description of a control theoretic systems model is given and its use and validity are demonstrated by applying it in a piloted approach to landing situation. The analysis procedure assumes that the vehicle dynamics are represented by linearized equations of motion

    Manned Vehicle Systems Analysis by Means of Modern Control Theory

    Get PDF
    Optimal control theory and systems analysis of man machine systems and operator performance prediction model for compensatory tracking tasks are discussed

    Closed loop models for analyzing the effects of simulator characteristics

    Get PDF
    The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload

    The search for the cause of the low albedo of the moon

    Get PDF
    Experimentation concerning lunar weathering and its effect on the albedo of the surface cover consisted of: (1) determination of the surface chemical composition of lunar soil and ground-up rock samples by Auger electron spectroscopy, (2) measurement of the optical albedo of these samples, and (3) proton or alpha-particle irradiation of terrestrial rock chips and rock powders and of ground-up lunar rock samples in order to determine the optical and surface chemical effect of simulated solar wind

    A study of the Markov game approach to tactical maneuvering problems

    Get PDF
    Application of Markov game approach to planar air combat problem

    The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    Get PDF
    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil

    Multi-variable translation equation which arises from homothety

    Full text link
    In many regular cases, there exists a (properly defined) limit of iterations of a function in several real variables, and this limit satisfies the functional equation (1-z)f(x)=f(f(xz)(1-z)/z); here z is a scalar and x is a vector. This is a special case of a well-known translation equation. In this paper we present a complete solution to this functional equation in case f is a continuous function on a single point compactification of a 2-dimensional real vector space. It appears that, up to conjugation by a homogeneous continuous function, there are exactly four solutions. Further, in a 1-dimensional case we present a solution with no regularity assumptions on f.Comment: 15 page

    Isospin and density dependences of nuclear matter symmetry energy coefficients II

    Full text link
    Symmetry energy coefficients of explicitly isospin asymmetric nuclear matter at variable densities (from .5ρ0\rho_0 up to 2 ρ0\rho_0) are studied as generalized screening functions. An extended stability condition for asymmetric nuclear matter is proposed. We find the possibility of obtaining stable asymmetric nuclear matter even in some cases for which the symmetric nuclear matter limit is unstable. Skyrme-type forces are extensively used in analytical expressions of the symmetry energy coefficients derived as generalized screening functions in the four channels of the particle hole interaction producing alternative behaviors at different ρ\rho and bb (respectively the density and the asymmetry coefficient). The spin and spin-isospin coefficients, with corrections to the usual Landau Migdal parameters, indicate the possibility of occurring instabilities with common features depending on the nuclear density and n-p asymmetry. Possible relevance for high energy heavy ions collisions and astrophysical objects is discussed.Comment: 16 pages (latex) plus twelve figures in four eps files, to be published in I.J.M.P.

    Sensitivity of a high‐elevation rocky mountain watershed to altered climate and CO2

    Get PDF
    We explored the hydrologic and ecological responses of a headwater mountain catchment, Loch Vale watershed, to climate change and doubling of atmospheric CO2 scenarios using the Regional Hydro‐Ecological Simulation System (RHESSys). A slight (2°C) cooling, comparable to conditions observed over the past 40 years, led to greater snowpack and slightly less runoff, evaporation, transpiration, and plant productivity. An increase of 2°C yielded the opposite response, but model output for an increase of 4°C showed dramatic changes in timing of hydrologic responses. The snowpack was reduced by 50%, and runoff and soil water increased and occurred 4–5 weeks earlier with 4°C warming. Alpine tundra photosynthetic rates responded more to warmer and wetter conditions than subalpine forest, but subalpine forest showed a greater response to doubling of atmospheric CO2 than tundra. Even though water use efficiency increased with the double CO2 scenario, this had little effect on basin‐wide runoff because the catchment is largely unvegetated. Changes in winter and spring climate conditions were more important to hydrologic and vegetation dynamics than changes that occurred during summer
    corecore