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INTRODUCTION

The operation of vehicles that transport men and materiel
is still largely under the control of people. Research in human
response theory, or in that aspect of the theory commonly referred
to as "manual control," is aimed at developing the data, models
and procedures that will allow such human-controlled vehicles to
be designed in an efficient manner. For some time now, Bolt
Beranek and Newman Inc. has been conducting a comprehensive pro-
gram in manual control research. An essentlial part of this pro-
gram has been a series of theoretical studies performed under
contract to NASA-ERC (NAS12-104). The basic goal of these efforts
was the development of models of the human operator that could be
systematically and easily used to predict pilot behavior and sys-
tem performance in complex control tasks. This report presents
the latest results of these theoretical studies and reflects our
current status with respect to achieving the above goal.

Modern research in manual control had its origins in the
1940's. Until recently, the efforts were based primarily on
statistical communications theory and on what has become known as
classical control theory. As might be expected, most of the work
was devoted to obtalining an understanding of human control be-
havior in the performance of relatively simple tasks. Typically,
the controller's task was one of compensatory tracking, involving
a single display indicator and a single control input. The work
of Russell [1], Elkind [2], McRuer and Krendel [3] and McRuer,
Graham, Krendel and Reisner [4], resulted in a set of quasi-linear
models that were surprisingly adept at predicting human behavior
in this simple but important class of problems. In essence, this
work indicated that the human controller attempted to adopt a
control strategy that would result in closed-loop performance



comparable to that of a good feedback control system. The work
is well summarized in the excellent report of McRuer, et.al. [4].

Attempts to analyze more complex manual control systems began
about 1960. For the most part these efforts concentrated on
the problem of developing linear models for the human controller
in multivariable, multi-display situations. As regards this prob-
lem, two basic approaches have been emerging. The earlier approach,
developed primarily by McRuer and his colleagues [5,6], seeks to
extend the metheds and insights developed for single-axls studies
to the multivariable case. Thelr approach is based on classical
multiloop control theory and relies heavily on judgements concern-
ing the closed-loop system structure,

While multiloop analysis has been applied to manual control
problems with reasonable success in several instances (See, e.g.,
References 7 and 8.), difficulties and limitations arise in em-
ploying it in a systematic fashion. Rather, one relies on intui-
tion and a good deal of "artistry" in applying the multiloop
methods, particularly when pilot control is 1nvolved.

The second approach to human controller modelling is rooted
in modern control and optimization theory. It is based on the
assumption that the human controller is "optimal" in some sense.
The notion of the optimality of the human operator is not a new
one. Several researchers have attempted to exploit this general
idea in the development of models of human control behavior.

Some of the more recent attempts have been made by McRuer, et.al.
[9], Elkind, et.al. [10] and Burchfiel, Elkind and Miller [11].

McRuer, et.al. [9] attempted to use an inverse optimal con-
trol approach to pllot modelling. This was motivated by an



attempt to remove some of the engineering artistry associated

with the use of thelr verbal adjustment rules for the quasi-linear
model. The approach also has merit from the point of view that
the pilot is minimizing some subjective cost functional. Unfor-
tunately, they report little success with this approach, probably
because of the inherent difficulty of the lnverse problem. They
report better success in using optimal control theory in a model
matching scheme where the model to be matched is the so-called
"erossover model." They conclude that optimal control theory and
the crossover models can be used effectively to develop a pilot-
describing function appropriate to a particular controlled element.
It is important to understand that this approach does not really
exploit the full potential of modern control theory. The cross-—
over model is a single loop model and when one is confronted with
multivariable problems this approach wlll encounter the same
difflculties as multiloop analysis.

Elkind, et.al. [10] used modern optimization theory to pre-
dict human behavior in a multivariable tracking task, correspond-
ing to a V/STOL vehicle in hover. The results of that study were
quite promising. Predicted controller.gains were within a factor
of two of measured gains. Techniques for determining variables
of importance were suggested and partially verified. Pilot samp-
ling behavior was also predicted with reasonable accuracy although
the prediction scheme left something to be desired. Predictions
of performance scores were not very good. Thls was primarily due
to the fact that controller remnant was neglected.

Burchfiel, Elkind and Miller [11] attempted to evaluate the
hypothesis of human operator optimality in a preliminary study
conducted under this contract. They compared human operator be-
havior with that of an optimal controller in a simple control task



involving a quadratic optimization criterion. Good agreement
between human and optimal controller behavior was obtalned with
differences between the two behaviors accounted for by assuming
that the human optimized a slightly different (subjective) cost
functional.

We have also used a modern control theory approach in the
model development to be described in this report. Our baslic as-
sumption is that the well-trained, well-motivated human operator
behaves in an optimal manner, subject to hie inherent limitations
and congtraints. We are attempting to pursue this assumption to
its logical conclusions. Thus, we derive a model for the human
operator that contains elements that compensate optimally for his
inherent limitations. Indeed, these compensating elements along
with the methods for representing the human's limitations are the
unique and cruclal features of the model.

There are several reasons for choosing to work within a
modern control framework. The powerful state-space techniques
associated with modern control are ideally suited to the study of
multivariable systems. The systematic manner in which these tech-
niques can be applied to multi-input, multi-output systems sug-
gests that many of the difficulties in using multiloop analysis
with a "man in the loop" might be overcome.

The approach also facilitates modular development of the
human operator model, so that the model can grow "gracefully"
as more facets of human behavior are considered and understood.
Thus, we have been able to use the same approach to extend the
model to account for visual scanning, task interference and
operator workload {12]. This was possible because of the single
conceptual framework provided by the optimality hypotheses.*

1.

The hypothesis implies that we always seek a normative model,
That is, we attempt to determine what the human should do, glven

his limitations and the requirements of the task. The fact that

this assumption works so well, when the human 1is properly trained,
is convincing evidence of human capability and adaptability.

4



In this report we first present the theoretical basis for
the model of the human operator along with all the equations
necessary for its use, Results for some simple control tasks
that demonstrate the model's validity are also presented. Then,
we examine the sensitivity of model and system outputs to changes
in parameters of the model. Next, the model is used to analyze
a more complex task related to hover control of VIOL-type vehicles.
Preliminary studies to extend the model along with suggestions
for further work follow. A manual for the use of computer programs
that implement the model is included as an Appendix.






THEORETICAL DEVELOPMENT

In this chapter the mathematical and conceptual developments
that underscore our modern control approach to human operator
modeling are presented. Since much of the mathematical details
of the problem have appeared elsewhere [13], only the major equa-
tions that serve to describe the model will be presented, with
reference made to any lengthy derivations.

We begin by discussing the class of manual control problems
for which the model is designed. BRepresentations of varlous human
limitations are incorporated and their effects are discussed. For
simplicity, we analyze first the case where there is no scanning
of instruments. Next, the case where the human 1is free to scan 1s
presented and a means for predicting average sampling behavior is
derived within the overall optimization framework.

Single-Axis Control — No Scanning

Vehic]efdynamics and display. — A simplified representation
of the pilot-~vehicle-display system considered is shown in Fig. 1.

The human operator's baslc task is to control, in some prescribed

way, a dynamical system that is subject to external random dis-
turbances. One or more system outputs y(t) = col[xp(t),yz(t)...ym(t)]
may be of concern, and it is assumed that they are presented con-

tinuously to the human via some visual display or instrument panel.+

For simplieity, we assume that the human manipulates a single
(scalar) control u(t) through which he can exercise control over

*We examine situations in which visual cues dominate. However,

there is no apparent mathematical restriction that would prohibit
the consideration of motion or kinesthetic cues.
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the vehicle. The equalization network H(:) of Fig. 1 represents
the means by which the human attempts to optimlze his control
strategy for a given situation. Thus, H(:) is dependent on the
system being controlled and on the control task. The more general
case, where the human may have several control manipulators, is
mathematically, a simple extension of the single control case.

It is assumed that the system dynamics, which may include

actuator and sensor dynamics, are described by the 1inearT time-

invariant equations of motion

x(t) = A x(t) + b u(t) + w(t) (1)
where the n-vector x(t) represents the vehicle state, u(t) is the
human's control input to the system, and where w(t) represents

random external disturbances. K(t) is assumed to be a vector of
independent, zero-mean, gaussian white-noises wilth autocovariance

E{w(t)w(o)} = Wé(t-0) (2)

i.e.,

wiis(t—o) i=3

E{w,(t)w,. (o)} =
i 0 1#3

In most physical situations the disturbances that act directly on
the system are represented by colored noises with rational power-

*ﬁé do not consider any system nonlinearities in the present con-

text. However, certain types of nonlinearitlies may be included.
A discussion 1s presented in a later chapter.



density spectra. This situation is included mathematically within
Eq. (1), where additional states are introduced that arise from
various noise-shaping filters. If n, such states are associated
with the noise process, A, b and W will have the following struc-
ture

where A,; is n,x n_, A,y 1s (n—nc)x n,, ete.

The displayed variables yl(t),...,ym(t), m<n are linear com-
binations of the vehlcle states and may be correlated or linearly
independent. Thus,

y(t) = C x(¢) + d u(t) (3)
where C is an mxn constant matrix.

Generally, the components of y(t) will be some subset of the
system states; it 1s not necessary to assume that all states are
explicitly displayed. We shall assume, however, that if a quan-
tity is displayed expliclitly to the human controller, he can also
extract the rate of change of that quantity+[1u]. Thus, y(t) will
contain those system variables explicitly displayed to, as well as
those impllicitly derived by, the human.

+It is assumed that the human 1s not able to extract higher deriv-

ative information, nor can he estimate the time integral of a
displayed varlable.

10



Control task representation. — It is assumed that the con-
trol task 1s adequately reflected in the human's choice of a feed-
back control u(+*) which, in the steady-state, minimizes the

cost functional

n
J(u)=E Zin§+ru2+g62 ; 250 (4)
i=1

on the basis of the information obtained from viewing the display.

A quadratic performance index of this type represents a
natural extension of the classical manual control compensatory
tracking experiments in which the subject was usually instructed
to minimize mean-squared error. It was chosen here because of its
physical appeal, its mathematical tractability and the resulting
analytic simplfications it provides.

The cost functional weightings qizp, r>0 and g>0 in Eq. (4)
may be either objective (specified by the experimenter or designer)
or subjective (adopted by the human in performing and relating
to the task). Clearly, the selection of any subjective cost weight-
ings is a nontrivial matter and is tantamount to mathematically
quantifying the human's control objectives. 1In some simple cases
this can be accomplished a priori, since the actual welghtings
may often correspond to the objective weightings. However, in
more complex multivariable situations, representative relative
values of Q4 T and g may have to be elicited by model-data match-
ing procedures or by questionnaire.

One approach to determine the weightings is to regard the
human as attempting to minimize a prespecified error criteria

11



subject to the constralnts of keeping one or more secondary system
quantities within some desired tolerances. In this case, the sub-
jective welghtings may be vliewed as Lagrange multipliers that are
adjusted to satisfy the constraints imposed by the human (because
of habit or desire). For example, consider a helicopter station-
keeping task where it 1s desired to minimlize mean-squared position
error. It is most likely that a trained pilot in performing this
task will not cause the helicopter to pitch eXcessively(or too
rapidlﬁ and will try to keep the pltch variance within some toler-
ance. This tendency will be reflected in a subjJective weighting
on the mean-squared pitch (or pitch rate).

The nonzero control rate weighting g is a central element in
our optimal control model. As 1indicated, this term may represent
an objective or a subjective weighting on control rate. It should
be noted, for example, that rapid control movements are rarely
made by trained pilots. Alternatively, this term could be used to
account lndirectly for the physiological limitations on the rate
at which a human can effect control action. Regardless of which
of the above interpretations one adopts, one would expect the g
weighting to be an adjustable parameter of the model. We shall
return to this point shortly.

Human limitations. — Any reasonable mathematical model of the
human operator must include within its framework the various psycho-
physical limitations inherent in the human. Our model contains
time-delay, controller "remnant" and a representation of "neuro-
motor" dynamics as limitations, as indicated in Fig. 1. Possible
nonlinear or discontlinuous controller behavior is not considered.

In Fig. 1, the various internal time-delays associated with visual,
central processing and neuro-motor pathways have been combined and
conveniently represented by a lumped equivalent perceptual time-
delay 1. No approximation to this explicit delay (e.g.,Pade’network)
i1s necessary in the model's development or application.

12



We assume that the various sources of inherent human random-
ness are manifested as errors in observing displayed outputs and
in executing intended control movements. Thus, observation noise
and motor nolse are lumped representations of "remnant." They are
shown in Fig. 1 and have been discussed at length in Levison [14 )
These noises represent the comblined effects of random perturbations
in human response characteristics, time variations 1n response
parameters, and random errors in observing system outputs and inputs.

Preliminary evidence had indicated that it would be extremely
difficult to differentiate experimentally between motor nolse and
observation noise and that combining them into an "equivalent"
observation noise seemed a perfectly valid procedure. For the
time being we shall adopt this procedure, but we shall see later
why thls approach requires modification.

In the model of Fig. 1 an "equivalent" observation noise vec-
tor is thus added to y(t). A single noise vy (t) is associated
with each output yi(t). Recent studies of co%troller remnant [14]
have shown that over a wide range of tracklng tasks, the injected

noises vy (t) i=1,...,m are closely approximated by independent
i
whilte-noise processes with autocovariances

{ (t)V (o)} =V _ +8§(t-g) ; 4i=1,2,...,m
Y1 Y1

or

(£3v" _ (5)
ENYy t)zy(o) = Xy-6(t-o)

In general, a numerical determination of the (diagonal) noise co-
variance matrix yy will depend, among other things, on the rele-
vant features (quality, type and form) of the display panel and
on where the human is fixating, i.e., whether he is viewling a



quantlty foveally or peripherally. This fact will be used later
in extending the model to include visual scanning constraints.

In summary then, the human perceives

Xp(t) = y(t-1) + v (t-1) = C x(t-1) + zy(t-T) (6)

a delayed, noisy replica of the system output. Xp(t) is processed
by the human (by means of some equalization network) to yleld a
"commanded" control input uc(t). This later quantity is in turn
operated on by the "neuro-motor" dynamics, Hn(-) to give the re-
sultant control input u(t).

We do not include "neuro-motor" dynamics directly among the
inherent limitations of the human operator. Recall, however, that
we have included a term that depends on control rate in our cost
J(u). Rynaskii and Whitbeck [15] have shown that the inclusion of
this term results in a first-order lag being introduced in the
optimal feedback controller. Thus, the control-rate weighting g
could be used to account for the lag often attributed to the neuro-
motor system (although there is no a priori reason to make this
analogy). In any event, an analogy of this type may prove useful
in helping to choose numerical values for g based on human per-
formance data concerning neuro-muscular lags.

Model structure. — Within the above framework, the human's
control characteristics are determined by the solution of a well-
defined optimal linear regulator problem with time-delay and ob-
servation noise. This optimization problem has been solved by
Kleinman [16] for the case when g=0. The results for nonzero g
are found in [137 or [1773.

14



It has been shown that the control u¥(t) which minimizes J(u),
conditioned on the observations Xp('): is generated by the linear
feedback law

Ty U¥(t) + u*(t) = -2* X(t) = u (t) (7)
where g(t) is the best estimate of the system state x(t) based on
the observed data xp(o), o<t. ™ and the optimal gains 2* depend
only on the glven system parameters A, b and on the cost functional
weightings. Moreover, for given values of a4 and r there 1s a
one~-to-one correspondence between g and TG the smaller g, the
smaller is Tye

The parameters 2* and T, are obtained numerically from

N

Q%

ir ™ A

Ty = 1/A 1=1,2,...,n (8)

n+l ° i

where ) = (Al,Az,...,An+l) is obtained from

A= 26 Eo/g (9)

and §0 is the unique positive definite solution of the n+l dimen-
sional Riccati equation

BoKg + Koo + Qp - KoboboKy/z = 0 (10)

with Q, = diag(ql,qz,..u,qn,r) 3 by = col[0,0,...,0,1] and

|

[©

|

B = | - (11)
1
1
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As shown in the overall closed-loop system of Fig. 2, the
optimal estimate X(t) 1is generated from o (t) by the cascade com-
bination of a Kalman filter and a least—mean—squared predictor. +The
filter and the predictor are linear dynamic elements that require
for thelr implementation a model of the dynamic system (1), or
put another way, an internal model of the environment. The Kalman
estimator models the human's deduction of system states from dis-
played information while the predictor models the human's compensa-
tion for his inherent time delay. The combination of estimator,
predictor and gains represents the optimal model's equalization
network corresponding to the H(:) of Fig. 1.

Effects of motor noise. — Before proceeding further with the

model, we explain the need for motor noise vm(t)-and show how the
above results become modified with its inclusion.

The problem lies in the estimator portion of the model. 1In
the absence of motor noise the optimal model has perfect knowledge
of the control input u¥*(t). It is then apparent that in some
situations the Kalman filter will perform linear operations upon
u¥(t) in order to generate perfect estimates of some system states.
As an example for which this is true consider the system governed
by the equations

xl = x2+w y = + v

X

yp2 = X, + v,

3o
N
]
o

For simplicity we set 1=0.
1.

This feedback structure is fixed. However, the various feedback

Y



It is easy to show in this case that the Kalman filter can
obtain a perfect estimate of xz(t), i.e., §2(t) = xz(t), by simply
"ignoring" the noisy observation yp2(t) and deriving ﬁz(t) by
direct integration of u¥*(t).

In general, the model will obtain a perfect estimate of any
state that is related only to the control u*(t). (In cases where
input disturbances enter the dynamical system in parallel with
u¥(t) such a situation will not pervail.) This ability to perform
perfect estimation is a limitation with the model as it presently
exlists.

It is relatively clear that the sources of the limitation
are: (1) the estimator employs a perfect representation of the
system and can integrate exactly; and (2) the estimator knows the
control input u¥*(t) exactly. Obviously, the human operator enjoys
neither of these advantages, nor did we postulate that such was
the case. We dld, however, lump all sources of remnant into an
observational process. It is now apparent that this procedure
breaks down in certaln instances.

The most direct way of overcoming the problem is to include
an injected motor noise, as well as an observation noise as human
limitations. This construct would certainly prevent the model
from having perfect knowledge of the control 1nputT Unfortunately,
we presently do not know how to measure an injected motor noise
directly. Furthermore, the best method for including such a noise
in the model is not immediately obvious. As a first approximation
we have included motor noise in our human operator model in the

*An injected motor noise is, in some respects, equivalent to an

imperfect system model in the estimator.
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manner indicated in Fig. 2. A gausslan white-noise vm(t) is
added directly to the "commanded control" uc(t) with

E{vm(t)vm(o)} = Vm-G(t—o) (13)

thus corresponding to the simplified model of Fig. 1.+

With the inclusion of vm(t), the control theoretic model of
‘human response becomes modified. However, 1t is assumed that the
model retains the control structure that was obtained in the
absence of motor nolse. Thus the human's control input is assumed
to be generated by

T(t) + u(t) = u (£) + v _(t)
(14)
u (t) = -£*3x(t)
where Ty and 2* are determined by Egs. (8)—(11)asbefore.++ g(t)
again denotes the best estimate of x{t) conditioned on the obser-
vations Xp(c),ogt.

The estimate x(t) 1s obtained from the cascade combination of
a Kalman filter and a predictor, that must be modified to include
the additional noise term vm(t). We define the "augmented" state
vector x(t) = [x(t),u(t)] where, by combining Egs. (1) and (14),
x(t) satisfies ’

+An alternate representation of motor noise that has more physical'

appeal 1s presented in a later chapter.

++The ramifications of this assumption have yet to be investigated.
The assumption is intuitively tenable since Vp, will always be
small relative to E{ug}. However, from a purely theoretical
viewpoint, the control strategy (14) no longer minimizes J(u)
(since E{u?} is undefined) and must be regarded as a "suboptimal"
control law.
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x(t) = A;x(t) + bju (t) + wy(t) (15)

with wy(£) = [w(t), v_(£)/1y] , by = [0,...,0,75"] and

:51 = ) e (16)

The Kalman filter generates i(t—w), the least-mean-square estimate
of the delayed state x(t-1) from

5(t-1) = AR(t-1) + 2,04V Iy (8)-C, X(8-1)1 + byu (5-1)
(17)

where C = [C:d] and where I is the covariance of the estimation
error e(t— ) = (t T)- x(t 1). El satisfies the Variance Equation
= ~1
.Q. = ﬂlg + ZlAl + El - -Z—lg-i!y 9151 (18)
with El = diag[wll,...,wnn,v /1 1.

The predictor generates the best estimate X(t) = [g(t),ﬁ(t)]
from the estimator output p(t) = X(t—r) according to the equation

36y = £(t) + AT [p(t) - E(t-1)]

(19)

E(t) = AjE(E) - b, 2*x(t)

Thus, the human operator model remains linear with the intro-

duction of motor noise. Its basic structure remains the same as
in Fig. 2; however, its detailed structure 1s now different as a
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result of vm(t). (1Ir Vh+0 it 1s straightforward to show that
():1)n+1 n+l*0’ i.e., u(t) becomes estimated perfectly.)

Model outputs. — Once the optimization problems associated
with the model are solved 1t becomes possible to predict various
facets of human controller behavior as might be measured in ex-
periment. In this sectlon we discuss these model predictions and
present equations useful in applying the control theoretic model
to the study of actual man-machine systems.+

Immediately obtainable withlin the optimization context is a
closed form expression for the covariance of yx(t). (See Reference
16 for a derivation.) Thus,

T
X = B{y(t)y' (8)} = ef1TpetdT + J e21%_ e21%g0
0

Ao A 1oz A

+ J =917z, 0V T e 27e2 045 (20)
0

where A = A, - 12 , = (2%,0).

Since y = (x,u) the variances of system quantities are thus
given by

E{Xi(t)} = X4y for 1i=1,2,...,n
E{yi(t)} = (C1XC1)yy for 1=1,2,...,m (21)
E{u®(t)} = X

—n+l,n+1

+A concise summary of model inputs and outputs is found in

Appendix B.
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and,neglecting the explicit white nolse component of u(t).
E{42(t)} = A XA (22)

Equations (20-22) explicity show the manner in which the human's
limitations affect overall closed-loop performance. These vari-
ances can be measured easlly in an experimental situation.

As we have noted earlier, the optimal feedback controller is
linear and time-invariant; its structure being expressed in the
time-domain by Egs. (15-19). This structure can therefore be
expressed equally well in the frequency-domain by a transfer
vector relating y to u, 1.e.,

u(s) = h(s) y(s) (23)

Various expressions for h(s) can be derived from Egs. (15-19) or
from block diagram manipulations. One such expresslon is

~1

e(Sl—Al)Odo. (SL*E) + SE_-_@_"’E E - EC'V’*].

1 -1~y

jox
—~
w
~r

il

1

po>
~
2]
i
>
~

O Sy Y

(24)

~ , -1 ~
where A = él —glg'zy 91 and g = (£*,0). Equation (24)is particu-
larly interesting since it explicitly shows how the time-delay T

modifies the optimal feedback controller.

An alternate expression for h(s) that is more amenable to
computation is given by
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= 2 [ (A-sI)T -1, -1 -1
_Il(S) = -Tf;\l—s-'-"T e - (S:_[_—é) Elg-izy +« (14D)

(25)

where

D = gge‘é's—l-“[(s;-grl - (s1-m)71] + (s;—A)*% by (26)

These equations simplify greatly for computation since
by = (0,0,...,0,730).

The elements hl’h2""’hm of h(s), called the "internal"
transfer functions are not experimentally measurable, but in
cases where there is a single input noise disturbance, i.e.,
w(t) = w + £(t), a closed-loop describing function relafing the
control u(t) to any single output, say yi(t)3 can be easlily
measured. Experimentally, thls 1s accomplished by recording

the time histories of Yy and u, and computing the Fourier trans-

forms yi(w) and u(w) to obtain

et = [483] (21

A theoretlcal expression for this "equivalent" transfer
function can be obtained in several ways. Since there is only
one input noise,a convenlent method is to take the ratio of the
portion of u(s) and yi(s) that relate directly to the input dis-
turbance w. Thus, from Egs. (1), (3) and (23),

u(s) = h(s)y(s) = h V; u(s) + h V, £(s) (28)
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or

h 'V, 5
u(s) = -:[‘:E-YI £(s) (29)
where
V, = C(sI-8)Tbta, v,= C(sI-M) 7w (30)

Since u(t) and &{(t) are both scalars,
v3(s) = ¥V,  uls) + V,, E(s). (31)

Substituting for u(s) and forming the ratio u/yi gives the result

“}4

h
FV (32)

- hy _(s) = =
ie Vv, + V,,(I-h V)

Vi4

Note that if V, = zl-é(s) where 8(s) = scalar (a condition that
is satisfied if, for example, the input forcing function is added
in parallel with the control signal u{(t)) then Eq.(32) reduces to
h(s)V, (s)
h )y = :

ie(s = —W— (33)

This 1s a particularly interesting expression since h Xl is the
open-loop transfer function (corresponding to the familiar Ych)
which, at least in simple cases, 1s ldentical to h, V.,.

The model can also serve to predict the power spectral den-
sity of any signal in the closed-loop system. Moreover, since
this system is linear, any power density spectrum can be consid-
ered as the sum of two parts: one arising from w(t), i.e., input-
related, and the other arising from the noise sources gy(t) and
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v (t), i.e., remnant related. The pertinent equations for power
density are obtained' by substituting u(s) = h C x + h vy + ?EE?T
in Eq. (1) and performing the simple matrix manipulations. The
resultant expressions are (positive frequencies only)

D) = 5 [ 2ax () + 2y (0] (31)
c r
where
_xxi(w) = I(w)WT'(-w)
(35)
9,4 (w) = I'(w)b h(w)V h'(-w) + “’—T" b'I"( w)
r w +1
I'(w) = [JuI-A-b h (w)c1™t (36)

® x and @ are, respectively, the input (i.e., w(t)) and

remnant-related portions of the x spectrum. Similarly,

nyi(m) =< Qxxi(w)gt
(37)
_yyr(w) =C ¢ xr(w)g'
uui(w) = h(w) gyyi(w)b_'(-w) 58)
U Vm
uu (w) = D_(w) gyy (w)l_l(—m) + —2—':"2—:; + b_(w)_v_yh'(-w)

r r T
. N

+Setting d=0 for simplicity.
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The integral (over w) of any of the above quantities gives the
total remnant and/or correlated power in any desired signal.
The total power is, of course, given by Eq.(21).

Since the system is linear 1t is simple to reflect the
remnant processes vy(t) and vm(t) into a single (mathematically)
equivalent noise process r(t) injected onto a particular output,
say yJ. This apprqach of comblining all sources of remnant has
been used for measuring remnant in cases where there is a single
input noise disturbance [14]. The expression derived in [14] for
injected remnant power (regarded as a single noise on yj(t)) 15T

(w)
erj(w) = % . T—m l J(w)! (39)
1

uu

¢,.. (w) can be computed easily by substituting Egs.(38)&(30) into

Eq.(39). Theoretical predictions are thus available of yet an-
other standard measure of human response 1in tracking tasks.

Model application. — In this section the procedure that one
would use in applying the foregoing model to predict human opera-
tor performance is discussed. It 1s assumed that the parameters
A,b,C,W that specify the input-output characteristics of the sys-
tem to be controlled are given. Similarly, the cost functional
welghtings 94, T ON state and control variances are assumed specl-
fled. As discussed previously, the specification of subjective
weightings may be a nontrivial matter.

+Note that from an experimental point of view, only power measure-
ment of u(t) are needed to compute e, One does not need an
expression for h(s). J
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In order to apply the optimal control model it is necessary
to know the human response parameters T, N> sz Vm' Reasonable
approximations to these quantitles are often available. For ex-
ample, published data in the manual control field [4] indicates
that typical values for the effectlve time-delay are t=.15-.25 sec.
The analogy between ™ and the "neuro-motor" time-constant is
useful in helping to choose a value for e Human performance
data concerning neuro-muscular lags indicates that t,, iIs of the

order ty = .1-.3 with Ty = .1 being typical [3].

N

The determination of numerical values for Yy and Vm is pres-
ently a difficult task. These quantities depend on the nature of
the display, the physical environment, as well as on intrinsic
human properties. One encouraging result has been found, however
[14]. Over a wide range of foveal viewing conditions, each white
observation noise vyi(t) has a covariance that is, on the average,
about .01lw times the variance of its associated output yi(t).1~
Thus

(y&)ii = mpy E{yi} ; 1=1,2,...,m (40)

where the observation-noise-ratio, py = .01. Thus, vvi(t), when
normalized with respect to the variance °§1’ has a poéitive fre-
quency power density level of -20 dB.

The motor noise, vm(t), which is added to the "commanded"
control uc(t),is assumed to have a covarlance

¥This is indicative of an underlying multiplicative noise process

of the form vyi(t) = Ei(t)yi(t) where Ei(t) is a white-noilse.

This multiplicative aspect of observatlon nolse is discussed in
Reference 14.
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V, = mp, E{ul} (41)
Values for the motor-noise~ratio, P have been obtained from
model-matching analysis of some simple tracking tasks. We found,
typically, pu=.003 (corresponding to a normalized motor noise of
approximately -25 dB), although a further study of motor-noise

is warranted.

The sources of human randomness are thus modelled by additive
white-noises, each of whose covariance scales (with factor py OT
pm) with the varlance of the quantity to which it 1is associated.
From a mathematical viewpolnt thils representation introduces a
subtlety in the theoretical developments. The (sub)optimality of
the control law (14) depended on the separability of estimation
and control processes, i.e., on I being independent of uc(t).

If the noise covariances are given by Egs. (40-41), then I, de-
pends on the control, and separability cannot be guaranteed.

This point is too complex to be investigated within the scope of
this report. However, 1t seems plausible to assume that even if
(14) is nonoptimal, it is a reasonable suboptimal (separable)
control law, provided the noilse covarlances are suitably adjusted.

Once the value of ™ is specified, 1t is a simple matter to
choose a "control rate weighting” g in Eq. (4) such that the
corresponding gains A determined by Eqs. (8 )-(1l1l) have TN=1/An+l
as required. Next, values of V_ and Vh are adjusted in such a

Yy
way that when the variances (20) are computed:

(v.)
—l—%_j;= pi ; i=l’2,ovo’m
Vh (42)
—————— = p
nE{ui} m
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Since the noise-ratios (o and Pm have been designated as
both inputs and outputs of our model, (inasmuch as they depend
on the solution to the Variance Equation (18)),the adjustment
process requlres several iterations on yy and Vm‘ We thus solve
a sequence of optimlization problems in which we choose values
for Xy and Vm and compute the resultant noise-ratios. The se-
guence 1s terminated when values for the covariances are found
such that the computed noise-ratios are equal to the pre-specified

no.’Lse—J:'at:‘Los.Jr

When the model has been adjusted to the requisite values of
Py and P (or yy and Vm) numerous outputs can be obtained that
serve to predict dlfferent facets of human response as discussed
in the preceding section. An interactive computer program,
Human Response Analyzer III (HRA3), has been developed for ac-
complishing these predictions. A manual describing in detail the
program and its usage is included as Appendix B. The manual con-
tains an example (along with actual computer type-out) that ex-
plicitly shows the manner in which one uses the model.

Model validation. — To validate the model and to illustrate
the procedure for applying it, model predictions are compared

with data obtained from a set of manual control experiments.

Each of these experiments consisted of a compensatory tracking
task in which the human controller was provided with a single
manipulator and was given an explicit display of system error, e,
(a scalar). The controller could therefore obtain error rate; é,
directly by observing the velocity of the display indicator.
Figure 1 contains a block diagram of the control situation.

+A new solution to the problem that allows for direct specifica-
tion of the noise-ratios is presented in a later chapter. This
alleviates the need for on-line iterations.
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Three sets of vehicle dynamics were investigated: pure gain
(k) , velocity control (k/s), and acceleration control (k/sg).
The system input disturbance was composed of a set of sinusolds
whose amplitudes were chosen to approximate a rational power
spectral density function. For k/s and k/s2 dynamics, a simulated
first-order noise spectrum having a break frequency of 2 rad/sec
was applied as a velocity disturbance to the vehicle. For the
experiments with k dynamlecs, a simulated second-order noise spec-
trum having a break frequency of 2 rad/sec was appllied as a posi-
tion disturbance. 1In all cases the subjects were instructed to
minimize mean-squared system error. The experimental conditions
are described in more detail in References 12 and 17.

In the theoretical analysis of each of the three cases, the
cost functional ( 4 ) was taken to be of the form

J(w) = E{e?} + g E{0°} (43)

The normalized observation noises on error and error rate were
adjusted to -20 dB (white noise power density level) correspond-
ing to foveal viewing conditions. Normalized motor noise was
universally adjusted to -25 dB. Nominal values of t and TN
.15 and .1 sec, respectively. Ty Was adjusted by picking an
appropriate control rate weighting, g.

were

k/s Dynamics (k=1)

Ir xl(t) denotes the noise disturbance and x2(t) denotes the
system error, e, then

kl(t)

—2xl(t) + wl(t) (4u)

L}

,iz(t) x9(£) + u(t)
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where wl(t) is white noise with covariance Wyq = 8.8 (so as to
yield a required value of E{xi} = 2.2). The system outputs (i.e.,
"displayed" quantities) yq and y, were respectively error (x2)

and error rate (iz = x, + u).

1
The analysis was conducted with g = .00017 so as to yield

T = .08 sec (slightly below nominal).+ The nominal effective

time-delay 1=.15 sec was taken. Next, as outlined in the preced-

ing section, values of V_yl,V.yz and Vﬁ were chosen which corresponded

to normalized white nolse power density levels of -20, -20, and
-25 dB, respectively. The variances which result from these noise
values constitute the prediction of closed-loop performance.

Table 1 contains the experimental and theoretical values of mean-
squared error, error rate and control input. Both sets of numbers
correspond to within 10 percent.

Having specified all of the model's parameters, Eq. (25) was
used to determine the human's transfer function. Since there are
two displayed quantities vq and Yo and a single control input u,

u(s) = hy(s)yy(s) + hy(s)y,(s) (45)

The transfer functlons hl(s) and h2(s) are not directly measurable
but a closed-loop describing function relating control to error
can be measured. Since y2(s) = syl(s), this "equivalent" transfer
between u and ¥4 is given by

u = =
R

+It was found that N T .08 resulted in slightly better agreement

with experimental quantities than did ™ < 1.
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Figure 3 shows a comparison of the measured and predicted describ-
ing functions for this example (crossover frequency is at

w, = 4.8 rad/sec). The measured and predicted equivalent injected
remnant spectra (39) (reflected and normalized to system error)
are also shown in Fig. 3. As can be seen, the predicted results

are 1n remarkable agreement with the measured data.

The manner in which the model's "internal" transfers hl(s),
h2(s) combine to give hle(S) is shown in Fig. 4. Note that the
major contribution of hl is at low frequencies (i.e., below cross-
over) while that of h2 is at high frequencies (beyond crossover).
This 1is intuitively expected since at low [high] frequencies the
human responds primarily to position {ratel] information.

k/s2 Dynamics (k=1)

The system state equations are (xl = noise, X, = error)

5(1<t) = -2x;(t) + w,(¢) (47)
kz(t) = x3(t) + xl(t)
k3(t) = u(t)

wl(t) has covariance Wiy = 217 to give E{x2} = .054. The two

1
output quantities are y, = x,, ¥y, = x, + x, = error rate.
1 2 2 3 1

The analysis was conducted as for k/s dynamics. TN was set
to .1 sec by picking g = 7x10—5. The time delay T was .21 sec.
Observation and motor noise levels were adjusted to their requi-
site values.
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Table 1

Measured and Theoretical Human Performance

Parameters M.S. Error M.S. Error Rate| M.S. Control
System ™ T Meas. Theor.| Meas. Theor. |Meas. Theor.
k/s .08 .15 .13 .12 3.1 3.06 b, 2 3.83
k/s® .10 .21 014 L,G1Y .10 .11 | 1.43  1.28
K 11 .15 13 L1l 5.8 5.37 53 .54

The resultant closed-loop performance, equivalent human
describing function and remnant spectrum (reflected to error rate)
are compared with the corresponding experimentally obtained guan-
tities in Table 1, and Fig. 5. The internal describing functions
hl(s) and hz(s) for this case are plotted in Fig. 6. Agaln, we

see that at low frequencies hle(S) = hl(s), while at hiph fre-
gquencies hle(s) zsh2(s), indicating the manner in which displayed
information is used in generating the control input.

k Dynamics (k=1)

In order to reduce high frequency nolse, the pure gain dy-
namics were approximated by a filter f(s) = 40/(s+40). The time
constant Ty Was set to .1 sec and the time delay to .15 sec.

Observation and motor noises were adjusted to their respectlve
levels. The comparison of theoretical and measured quantities
is given in Table 1 and Fig. 7.

~IMIn the measurement frequency range w<32 rad/sec.
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The remarkable agreement between predicted and measured
quantities as demonstrated above is extremely encouraging and
underscores our modern control theory approcach to human operator
studies. The model was capable of accurately predicting and/or
reproducing various properties of human response in simple track-
ing tasks, using relatively few parameters. Of course the model
does not tell us whether observed characteristics of the human's
response (e.g., the high-frequency resonant peaks) are implemented
by muscles in the arm or in the head. However, the model does
suggest reasons why these characteristics are present. For our
purposes, understanding why is usually more important than under-
standing where.
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Single-Axis Control — Scanning

We now dlscuss the modifications to the above results when
there are multiple instruments and scanning among instruments is
allowed. We shall remain within our conceptual optimization
framework to develop and solve an "optimal sampling problem".[18]

Preliminaries. - Recall that in developing our model of the

human operator, a white observation-noise vector zy(t) is assoclated
with the output process l(t>- The nolses Vyi(t) depend parametric-
ally on the various display features and (in cases where there are
several instruments to monitor) on the fixation point of the eye,
represented mathematically herein by w. Thus, parametrically

yy(t) = yy(w,t) (48)

v, = ¥, (w)

Numerical values for the covariance matrix Xy(w) will depend on
where the human operator is fixating (i.e., whether he is viewlng

an instrument foveally or peripherally).

We define a scanning strategy as a method for picking the

fixation point of the eye at different time instances, i.e., a
procedure for choosing w(t). We shall assume that there are k
instruments to be viewed. Therefore, at any time t the human is
fixating on one of the instruments or else is switching his foveal
attention between instruments.f These possibilities are denoted

TSince the human's fixation point cannot be changed instantaneously

we associate a finite transition time with any saccade. Typically

to = ,1-.15 sec.
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by letting w(t) = j, j=1,2,...,k or w(t) = 0, respectively. Note
that w(t), so defined, is piecewlse constant and over any time

interval may be represented by a sequence of values of the form
{1,0,3,0,2,0,3,...1}.

When the fixation point of the eye varies with time, the
observation-noise covariance matrix Xy(w(t)) will also vary with
time. However, for each {constant) value of w=0,1,...,k we asso-
ciate a constant covariance matrix yy(o), yy(l),...,yy(k). These
matrices are diagonal since the observation-nolse processes

yl(w) are assumed independent. If Vy(i) is the covariance matrix
corresponding to w=1 then the j-th diagonal element [V (1) 7. Iy

the noise covariance associated with viewing yi(t) while fixating
display i. The matrix Yy(w(t)) is thus plecewise constant, i.e.

¥, (u(t)) = V(1) if w(t) = 1 (49)

Each of the matrices yy(i) have elements corresponding to
viewing each of the displayed quantities yi(t) on a continuous
basis. Some of these elements will correspond to foveal viewing
and others to peripheral viewing. However, the signals on the
fixated instrument will generally have lower observation-noise
levels associated with their readings; this influences scanning
behavior.

In formulating the method for predicting scanning behavior
it is assumed that the matrices Yy(i),i#o are given., This is a
nontrivial assumption since precise guantitative determination
of these values is a difficult task. However, in some cases a
coarse approximation to yy(w) suffices (see Ref. 17 ). Finally,
the elements of yy(o) are assumed to be infinite, i.e., nothing
is seen during a saccade.
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Optimal sampling problem. — We now discuss our method for

for predicting human scanning behavior. We first assume, without
loss of generality (see Ref. 18 ) that the scanning strategy is
periodic with a fixed, but arbitrary, scan period T. Using the
techniques of [18] it is possible to show that for a fixed scan-
ning. strategy, w, the minimum value of the cost functional

Eq. (4 ) (neglecting the white-noise component of u) is given by

J¥(w) = min J(w,u)
* (50)
= L Lavg(w)£'+ v(w) + terms independent of w
where
A L o Ayt " " +
L = g% % el = "equivalent" gains
T ! (51)
=3
Lavp®) = 7 | Zast)at
0

and I(w,t) is the (periodic) solution of the Variance Equation

Eu,t) = Aj2(uw,t) + Z(w,t)A] + W, - g(w,t)givy1<w(t))glg(w,t)

(52)
with periodic boundary conditions

I(t) = Z(t+T) > 0 (53)

tRecall that £ = (£%,0).
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The correction term v(w) arises because of the method we
have chosen to represent motor noise.+ It 1s given by
-1/7 2
e N

y(w) = [Eavg(w)]n+l,n+l . ——-;§-- ‘g (54)

and will be small in cases when ™ is small (i.e., when l/'rN is
sufficiently greater than the bandwidth of the overall closed-loop
system). Fortunately, this is almost always the case so that we
can approximate J¥(w) by

J¥(w) = L Zoypl®) L'+ ... (55)

to correspond in form with the results reported in Refs. [17]1-[18].
(In a later chapter we shall present a different characterization
for motor nolse that does not result in the introduction of a
correction term y(w), and which is more appealing from a physical
viewpoint.)

The determination of the human operator's sampling strategy
rests on the assumption that the operator behaves in an approxi-
mately optimal fashion and samples his instruments accordingly.

In other words, the human chooses a sampling strategy w¥(t) that
minimizes J¥(w), or equivalently, he chooses the w¥ that minimizes

T(w) = L Lavg(®) i (56)

+Recall that in Ref. 18 , where motor noise is absent, so too is

the additional term y(w). It is easy to see that [Ean(w)]n+1,n+1*0
as Wn+0. Recall that this term 1s the error assoclated with

estimating u(t).
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Note that since i depends on the cost functional welightings,
the time delay, and the system dynamics, the human's monitoring
behavior depends upon the control requirements and the control
actions 1n an explicit manner. This is intuitively appealing.

Problem solution. — 1In the above development we reduced
the sampling problem to a deterministic nonlinear (matrix) optimi-
zatlon problem, the solution of which provides our predictions of

human visual sampling. Solving this problem for w¥* is, in general,

a difficult task. In some cases numerical search techniques can be

used to predict average scanning behavior, especially when there are
only two displays.

In the two display case, the scan sequences of interest have
the form {1,0,2,0} and average scan behavior can be represented
by the numbers tl and t2 which are the durations of time spent
fixating displays 1 and 2 respectively. Thus

T =1t

1 + t, + 2t , t_ = given

2 o) (o}

and for a particular T, the value of t, that minimizes I(w) may

1
be found by a scalar search. We then vary T and for each T com-
pute the optimal tl. In this way we search for the optimal pair
(t*¥,T¥%) or (t%,tg) corresponding to the optimal sampling strategy

w*(t).

Once w¥ is computed, it then becomes possible to predict
various measures of human response, as in the no-scan case. It
is simple to show that all of the cost computations for the scan-

ning case are equivalent to those of the no-scan case but with

Eavg(w*) replacing I in Egs.(20)-(22).
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When there 1s scanning, the notion of a freguency-domain
representation of the human operator is somewhat tenuous from a
theoretical standpoint, since one is now dealing with overt and
purposeful nonstationary behavior. The equations (17)-(19) that
define human strategy become time-varying with the replacements
Z +I(w,t) and yy+yy(w(t)). However, the same experimental mea-
sures that are made in the no-scan case can be made when the
human is scanning. These measurements may be thought of as rep-
resenting "average" frequency-domain characterlistics of the human.
In order to predict these average characteristics with the model,
we must replace the time varying quantities X(w,t) and yy(w(t))
with suitable "average" values. Such an average value for the
error covariance matrix is already avallable from the solution
of the "optimal sampling problem" namely Eavg(w*). An average
value for V_(w¥) can be defined in a similar manner. Noting that
Y;l(m), rather than yy(w) itself appears in all calculations, we
define

T

= % Jz;l(w*(t))dt (57)
(o]

-1
—avg

where T 1s the scan periecd. But since Yy(w) is plecewise constant

%

-1 “1y L .

o el CORPIE TP S (58)
=1

where fi is the fractional time spent in fixating instrument i.
Note that since the observation nolse matrices are diagonal, the
average noise covariance assoclated with the j-th displayed
variable, yj(t) is simply
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(Vo ave =| 2LV53(000, (59)

i=1

The frequency domain expressions (24)-(26) can now be evaluated
with Eavg and !avg replacing ¥ and yy respectively.

A simplified approach for tasks involving scanning. — The
major drawback with the above approach to scanning predictions

is the need to solve a formidable optimization problem. Only in
the simplest cases 1s it possible to minimize I(w) to find w¥*
(although it may be possible to find suitable approximations to
w¥, 1.e., suboptimal scanning patterns).

Fortunately, there is a reasonable approximate method for
predicting human response in cases for which there is sampling.
The method involves finding an approximation to gavg(w). Since
Z(w,t)

Z(w,t+T) we obtain, averaging Eq. (52) over one period T

T
1 -1 : ,
= ' - !
0 = MyZyp(e) + Ly (@) + Wy = § [ 2(e,0)ei v w)g 2w, tat
0 (60)
Since giy;lgl and Z(w,t) are both positive definite for all t, a

reasonable approximation to the integral average is merely the
1.

product of the averages , viz,
| 20,0V w)e Elu,t) & B (0)CIVEL (0)C T, (w)  (61)
T ws —avg' /=1 avg
0l
where Kavg is given by Eq. (58).

YIn addition, we have generally found I(w,t) to be slowly varying
over a perlod, giving further cause to this approximation.
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Thus, for a given strategy w (described parametrically by
the fractional allocations f,), the solution £(w) of

~

0=AZ+ZLA

2 2148 +W,-2C

A Vol (wiet (62)

will provide an approximation to gav
pute. The minimization of

g that is very easy to com-

I(w) ~ L £(w)i (63)

will thus involve a minimization over the quantitles fi subject to
the constraint

ﬁ fi = 1 - fo. (64)

where fo i1s the fractional time spent in switching foveal atten-
tion, and must be prespecified in the problem formulation. The
solution of this problem for the optimal allocation of flxation
time is much simpler than the optimal sampling problem posed
earlier. It 1s a standard type of (algebraic) constrained mini-
mization problem. Techniques for its solution are well-developed
and include nonlinear programming, steepest descent, ete. The
resultant i(w*) is then used in the expressions for scores,
describing functions, spectra, etc.

Note that the sampling period T does not appear explicitly in
in the reformulated sampling problem. However, as part of the
problem specification we must choose a value of fo = to/T = frac-
tional "dead-time". Choosing fo is thus tantamount to picking a
period T, For a given value of fo (or T) the model optimally
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adjusts the free parameters fi to minimize Eq. (63).+ We note
that I(w) is a monotonlcally decreasing function of £

There 1s some evlidence to show that the choice of fo (or T)
is not crucial in predicting human response characteristics.
Results of some experiments [17] suggest that the human's choice
of a scan period T may be governed by subjective considerations
(or habit) rather than by strict optimality criteria. In addi-
tion, numerical experience in computing I(w) as given in Eq. (56)
has indicated that the minimum of I(w) is fairly insensitive to
variations in T, but is sensitive to variations in the fractional
allocations ti/T‘ Thus, relatively crude estimates of fo may
often suffice in practice.

Summary

In the foregoing we have shown how optimal control and esti-
mation theory may be used to develop a model of human response in
manual tracking tasks. The tasks we considered were those in
which the controlled element was linear and the system was dis-
turbed by a white noise input. The model included representations
of human limitations and a cascade combination of a Kalman filter,
a least-mean-squared predictor and a set of optimal feedback gains
as compensating elements. An "optlimal scanning mechanism" was
also added to the model to account for situations where the human
operator must visually scan several instruments in order to
achieve his control objectives.

+For values of T much larger than the "time-constant" of Eq. (52),
our assumptions leading to Eq. (63) become relatively poorer.
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The use of the model in predicting task performance, con-
troller describing functions and power spectra was demonstrated.
The model was then validated by comparing model results with ex-
perimental data from three simple, but classical, manual control
tasks.+ The ability of the model to reproduce all the essential
data in these experiments, using relatively few parameters, is
most encouraging. Nevertheless, before the model can be truly
useful as a design tool, greater insight into 1ts detailed be-
havior, more systematic methods for picking its parameters, and
techniques for extending its range of validity and applicability
are all needed. These 1issues are addressed, in varylng degrees
of detall, in subsequent chapters.

+Data validating the scanning model were not presented. However,

a recent report [17] suggests that good predictions of human
scanning behavior should be possible with this model.

49






SENSITIVITY STUDIES

In this chapter we investligate the manner in which changes
in model input parameters produce changes in model outputs. The
cases to be analyzed include foveal tracking of XK/s, K/s2 and
K/s(s-1) dynamics. We will study the effects of changes in

"neuromotor time constant"” (TN), time -delay (1), observation
noise ratios (pi), motor noise ratio’ (p ), cost functional
weightings (qi,r) and input disturbance bandwidth. Parameters
will be varied about those values that ylelded a "best" match to
data obtained from actual experiments.

The objective of this study is to learn which model outputs
are most affected by a given model input, and to understand how
and why changes in the model parameters shape predictions of human
response. A desirable, if not necessary, goal of such a study is
to obtain a method for choosing model parameters that will provide,
in some definitive way, a "best" match to human respcnse data.

This 1is a necessary first step before one can use the model as an
analysis tool or in a purely predictive manner in complex situa-
tions.

K/s Dynamics

The parameters that were found to give a good match to ex-
perimental data were Ty = .08, 1 = .15, py = P, = -20 dB, p, = -25 dB.
The model predictions that result from this set of values were
presented in the last chapter. Herein, these values will be
varied (one at a time) and the resulting changes in model outputs

shown.

+We choose to vary the noise ratlos rather than the noises yy,vm

themselves, since the ratlios appear to be more intrinsic to the
foveal tracking situations studied herein.
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™ variations. — Changlng N i1s tantamount to changing the

bandwidth and gain of the human operator model. Decreasing ™
(i.e., decreasing g) places relatively more importance on keeping
the error variance low in the cost functional J(u). Thus, error
score will always decrease while control input power increases,
especially at higher frequencies. With increasing ™ the feedback
system becomes more sluggish and performance at higher frequencies
becomes relatively poorer.

Figure 8 shows the effect of variations in Ty upon the
equivalent describing function between displayed error and control.
Note that for decreasing Ty the gain increases as expected, but
with the greatest variation occurring beyond crossover. In general,
this will always be true since the dominant effect of Ty is felt
in the rate of control (i.e., u) which is manifested in the high
frequency characteristics.

Note further that ™ variations have only a small effect
upon describing function phase in the range w=4 to 30 rad/sec.
The pole introduced by the first-order lag ('rNs+l)“l contributes
up to 90° of phase lag in the feedback controller. Changing Ty
from .06-.14 moves this pole from 16 to 7 rad/sec. which accounts
for the (approximately 45°) phase variations.

Normalized remnant, shown in Fig. 9 , is seen to be affected
little by * The shape of the remnant spectrum is basically
first-order. For low values of N the remnant increases somewhat
at high frequencies since the overall bandwidth of the feedback
controller is increased and greater amounts of high-frequency

+ .
Thus increasing crossover frequency.
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remnant (as well as correlated power) circle in the closed-loop
system. However, the major contribution to these remnant varia-
tions occurs from changes in the characteristics of the motor
noise (as it is currently being treated). The motor noise, be-
cause of its being filtered by (rNs+1)_1, appears at the system
input as an injected first-order noise with hreak frequency at
l/TN. Changes in ™ reshape this noise (for m>l/1N) which causes
the apparent break frequency of the remnant spectrum to vary from
3.5 to 6.0 rad/sec as Ty is decreased from .14 to .06. If the
motor noise were zero, or if it did not depend in such a direct
manner on Ty, the effects of changes in Ty upon remnant would be
negligible.

The sensitivity of scores (error, control, control-rate) are
shown in Fig. 9. These curves show the trade-off between system
error and input control signal as indicated earlier. For smraller
Ty the system expends more energy and achieves a lower error score.

An interesting sidelight of this study concerns the relation--
ship between crossover frequency, Wy s and the control rate weight-
ing, g. Hofmann suggests that an approximate relatiorskiy ietw-en

w, and g is

Y

w, £ .707 g~ (65)
This expression was derived under zero remnant conditions. 1In
Fig.10 we compare w, as predlicted by the model, with that given
by Eq. (65). Note that Eq. (£5) is a good approximation for
higher values of g (4~1Ou corresponds to TN=.1). For low values
of g the differences between Eq. (65) and model predictions can
be attributed to remnant effects. Decreasing the observation
noises will increase gain and give higher crossover freguenciles.
(See Fig.13.)

*Private Commt.ication, L.G. Zofmann.
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T variations. — The effects of time-delay variations (from
.1 - .2 sec.) upon the describing function are shown in Fig.ll.

The most noticeable effect is seen in the high frequency phase.
Such is expected since this frequency range is well beyond cross-
over and the only model element still contributing to the phase
lag is the time delay e” ST, Thus, for high frequencies, the shape

of the phase curve is almost entirely governed by the time-delay,
and

Ad . 180°
Aw T

The effects of time-delay upon the magnitude of he(w) are clearly
evident. Increasing time-delay decreases the gain, as might be
expected, except about the high frequency resonant peak. Here,
the resonance becomes more pronounced for increasing time-delay,
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probably as a result of the predictor's need to extrapolate over
a longer time interval. Also, from a classical servo-mechanism
viewpoint, a greater time-delay moves the system closer to insta-
bility.* Thus, we see a more sharply defined resonance as T
increases.

The effects of time-delay variations upon remnant were found
to be minimal and therefore are not shown. The effects were sim-
ilar to those of Fig. 9 — the first-order break frequency of the
remnant spectrum varied from only 4 to 5 rad/sec as T decreased
from .2 to .1 sec.

Increases in 1 caused lncreases in all scores. The most
notable increasé was in the error score which doubled from .093
té .184 as Tt increased from .1 to .2. Other scores, however,
were far less sensitive. Control and control rate scores in-
creased by less than 20% over this same range.

Observation noise variations. — To study the effects of

changes in py we first vary oy and s separately and then together.
Variations in describing function and remnant caused by changing
p, are shown in Figs. 12 and 14, while Py variations are given in
Figs. 13 and 14, ©Note that the effects of py upon controller
describing function are negligible. However, the value of oy

does influence greatly the low frequency normalized remnant.

Variations in P have a very pronounced effect on the describ-
ing function. Gain increases over the entire frequency range as

+Decreasing phase margins, etec.
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observation noise decreases. This result, coupled with the in-
sensitivity with respect to Py indicates that, for K/s dynamics,
the controller responds more to error rate than to error informa-
tion. Better estimation of y2(t)<permits more accurate control
inputs to be generated while allowing for a higher gain on y2(t).
Note that in thils respect decreasing py, Or decreasing TN have the
same effect on the describing function - both, either directly or
indirectly, increase the controller gain,

Lower velocity noise will necessarily result in lower remnant
at high frequencies. Figure 14 shows this trend. Note that low
frequency remnant, resulting primarily from position noise V

).

s
is virtually unaffected by changes in s (or Vy2 vt
The influence of observation noise ratio on scores is shown
in Fig. 15. A lowering of any observation noise must necessarily
result in lower scores, however, the sensitivities will vary,
depending on the importance of the various displayed outputs to
the overall control task. We thus find the scores to be more
sensitive to p, than to p; in the range ~-14 to -26 dB, since
velocity information is more useful for control purposes.

We have seen that the dominant effects of position noise are
at low frequencies while those of velocity noise are at high fre-
quencies., Thus, simultaneous variations in both ey and Py should
affect system response in an additive way. Accordingly, Fig. 16
1s the result of varying oy and Py simultaneously. Note that
describing function+ and remnant variations are essentially the
superposition of the variations seen in Figs. 12-14,

Twe show only |he(w)

from that of Fig.13.

. The phase is virtually indistinguishable
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P variations. — Motor noise was introduced as an additional

(uncorrelated) system input to account for the fact that the human
can not estimate perfectly the control input, u(t), or signals
linearly related to u(t). In cases where the input noise disturb-
ance enters the system in parallel with u(t) (such as prevails
here), the need for such a construct is obviated. In such cases,
therefore, motor-noise should not appreciably affect the Kalman
estimator or, in turn, the feedback strategy, h(w). On the other
hand, increasing the motor noise introduces more remnant in the
closed~loop system. This increases all variances, especially that
of u and ﬁ, since the motor noise is injected in parallel with the
contrel signal.

Figure 17 shows the dominant effects of motor-noise
variations. As expected, he(w) is affected little by P With
increasing P> the magnitude of he(m) does decrease slightly due
to a slight lowering of estimator gains — estimation of all system
states becomes more difficult. The scores and normalized remnant
have a more pronounced response to motor noise changes. Note that
the dominant effect on remnant is at high frequencies. This is
because motor noise, in being treated 1like an additional (wideband)
system input, finds its low-frequency components being more easily
"tracked-out" by the feedback system than are its high-frequency

signals.+

Input bandwidth variations. — In the cases studied thus far,
the input forecing function was first-order noise with a pole at

wy = 2 rad/sec. We now study the effects of pole location on sys-

tem performance. We keep 7t .08, T = .15, Py = Py = -20 4B,

P = -25 dB.

~l'Recall the manual control experiments in which a low bandwidth
driving signal had a small high-frequency "shelf" added. It was
often found that most of the error power was due directly to this
high-frequency component.

N=
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Figure 18 shows the dominant effect of input bandwidth, Wy
As wy decreases, he(w) increases (along with some phase variation),
especlally at low frequencies, since it is relatively easy to
track a low-frequency signal. Of special interest in this case is
the crossover frequency, w, . It is stated in Ref. 4 that as
input bandwidth increases beyond crossover, the system crossover
will "regress" to lower frequencies. Accordingly, Fig.1l8 shows
system crossover (the intersection of the line AA' = m2 with he(w))
as a function of Wy For low bandwidth, crossover 1s relatively
invariant at w, = 4.8 rad/sec. However, as w; nears this value,
the crossover frequency is predicted to indeed "regress" towards
lower values.

Bandwidth variations were found to have a negligible effect
on system remnant. This is 1n accord with the experimental results
reported in Ref. 14 where it was found that bandwidth did not seem
to affect normalized remnant.

K/52

Dynamics
The same type of sensitivity study as performed for K/s dynam-

ics was done for the K/s2 dynamics of Eq. (47 ). The nominal

parameters taken for this case were Ty < A, T = .2,

pl =0, = -20 dB,
P = -25 dB. The resultant nominal describing function and remnant

spectrum appear in Fig. 5..

TN variations. — As in the K/s dynamics case studied before,
variations in Ty (or equivalently g) scale the optimal gains 2* and
also allow for more rapid control movements.+ Thus, Fig. 19 shows

TIf there were a weighting r on control, then variations in g would
have a reduced effect on %*¥. However, the 1l:1 correspondence
between g and ™ would still remain.
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that as TN decreases the feedback gain increases, with the greatest
increase being for w>10 rad/sec. Effects of Ty upon the phase are
small and are much the same as for K/s dynamics.

Decreasing N introduces a trade-off in the cost functional
J(u}. Error score decreases at the expense of lncreased control
rate and more control effort. Figure 20 clearly shows this trade-
off. Note that large increases in control effort result in rela-
tively small decreases in error score. This is because of the
second-order filtering of the plant. In general, the more filter-
ing between control and error, the less sensitive will be 02 to
changes in control power resulting from ™ variations. (Compare
with Fig. 9, for example, where the plant introduces only a

first-order filter.)

The effects of Ty upon normalized remnant spectrum (reflected
on error-rate) were found to be minimal and are not shown. As ™
was varied over a range .07 to .12 the normalized remnant changed
by only 1-2 4B at high and low frequencies. In the mid-frequency
range 1.0<w<10. remnant varied less than 1 dB about the nominal of

Fig. 6.

1 variations. — Time-delay variations have the same effect on
describing function (Fig. 21) as was observed for K/s dynamics.
Increasing 1 decreases Ihe(w)l slightly at lower frequencies while
at the same time it sharpens the high-frequency resonant peak.
However, the most noticeable effect of time-delay variations is
seen in the high-frequency phase lag. It is apparently true that
the high-frequency phase characteristics are almost entirely the
result of time-delay.
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Once again, normalized remnant is virtually unaffected by
changes in 1. However, system variances all scale monotonically
with T. Table 2 gives system scores for three different values
of t. Note the (almost) linear increase in scores as T varies
from .15 to .25.

Table 2

System Variances as a Function of Delay

TN=.1, Vy1=Vy2=-20-dB, Vm=—25 dB
Variance T=.15 T=.2 1=.25
e .011 .014 017
e .093 .108 .125
u 1.16 1.33 1.53
u 57.7 67.3 77.8
Observation noise variations. — The effects of observation

noise ratio upon system performance was studied by varying both
Py and Py about their nominal -20 dB values.

Variations with respect to p, were studied first. It was
found that changing p, over the range -10 to -30 dB resulted in
little, if any, change in the describing function, scores or
remnant. This gross insensitivity to Py is understandable since
the feedback system 1s acting essentially 1like a differentiator
(i.e., u(t) is proportional to e(t)). Therefore, é(t) = ye(t) is
the key quantity to be estimated by the model. Changes in Py have
little effect on this estimation, since the Kalman filter makes

little use of yl(t) in estimating y2(t), except possibly when y2(t)
is small or when Py is large.
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On the other hand, it is expected that 05 would have a more
pronounced effect on system performance. This is indeed true and
Figs. (22)-(23) show the effects of p, variations. The basic
effects are as found for K/s dynamics: Better estimation of y2(t)
allows for higher controller gains and more precise input genera-
tion. This 1s especially true at higher frequencies where
he(s) = shz(s). Decreasing oI results in a universal lowering of
scores (Fig. 23) as well as a decrease in remnant,., The major
changes in remnant spectrum occur beyond crossover, i.e., in the
freguency range where the feedback control system responds almost
entirely to yz(t). Thus, velocity noise variations find their
dominant effect at higher frequencies, as expected.

Because of the gross insensitivity with respect to Py the
results corresponding to simultaneous variation of Py and p, are
almost identical to those corresponding to variations in Py alone.

We therefore do not show the effects of varying both noises together.

Motor noise variations. — Unlike the case for XK/s dynamics,
the input noise disturbance in the K/s2 system being studied does
not enter the system in parallel with the control signal u(t).

(See Eq. (47).) It enters in parallel with X4 =fu(t)at, i.e.,

as a velocity rather than as an acceleration disturbance. There-

fore, recalling the discussion on motor-noise in the last chapter,
one would expect motor-noise to have a noticeable effect on system
response. Such is indeed the case as seen in Figs. (24)-(25).

The reasons for the observed variations are discussed below.

In the absence of motor-noise, %3 = u and the Kalman estimator
obtain§ a perfect estimate of x3(t) simply by integrating u(t).
Since Xy = ¥, = x3 + X4 (where Xy is the first-order noise disturb-
ance), estimation of Yos coupled with knowledge of x3, provides a
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direct estimate of x,. Thus, setting u(t) = —il will result in
low values of X, and in turn of Xoe

In general, when both position and velocity information are
avallable, the position information (i.e., ylp(t)) is of limited
use in estimating velocity [19]. Veloeity is estimated almost
directly from the observation y2p =¥, + Vy2' Therefore, in the
absence of motor-noise, position information is virtually unneeded
(hl(s)+0) and he(s) = shz(s) as seen in Fig. 24,

On the other hand, when motor-noise is present, x3(t) can no
longer be estimated from u(t) by integration and position informa-
tion 1is useful. Therefore, a good estimate of Xq depends indirectly
on proper use of ylp(t). Clearly, the importance of position in-
formation will depend monotonically on the level of motor-noise:
the greater Vm’ the more the use of ylp(t). The trends of
Figs. (24)-(25) clearly show this phenomena. The increase in
remnant results from both increased motor-noise as well as from
the higher. gains placed on yl(t) and its associated noise vyl(t).
Note the extreme sensitivity in scores for ®m >-25 dB. This is
primarily a result of the input disturbance effects associated
with treating vm(t) as a driving noise.

From the above results it 1s clear that motor-noise will have
a major effect on system behavior (especially at low frequencies)
when the input disturbance does not enter with u(t). To understand
the cause and effect relationship requires an analytic study of
motor-noise, and the phenomena that it attempts to represent. 1In
a later chapter we investigate this point in more detail.
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Bandwidth variations. — The effects of input forcing function
bandwidth upon human controller describing function is investigated.
The results are shown in Fig. 26. It is seen that increased band-
width results in lower describing function gains (phase remains

essentially unaltered). Syﬁtem crossover frequency (where Ihe(w)l
intersects the line AA' = w in Fig. 26) decreases almost linearly
from 3.2 to 2.2 as input break frequency increases from .5 to 8
rad/sec. Therefore, we again see a "cropssover regression” phenom-
ena.

Velocity weighting, 93. — Until now, the effects on system

performance of changing the cost functional weightings have not
been studied. Herein we investigate the results of adding a
velocity weighting, q3, where q3 may be regarded either as a sub-
jective or as an objective weighting.+

Since the cost functional weightings are paramount in the
determination of the feedback gains ¥ (see Eq. 10), changingAJ(uj
will have noticeable effect on system response. Furthermore,
introducing a weighting on, say x,, will necessarily effect a

tradeoff: oi will decrease at the expense of increases in other
3

system variances.

The effects of varying ds from 0 to .5 are shown in Figs.
(27)-(28). 1In this study the control rate weighting g was adjusted

each time to give 1, = .1. Note that increasing q3 results in a

universal decrease ?n [he(w)l. This decrease is somewhat more
pronounced at low frequenclies. Since more importance is being
attached to y2(t), the position yl(t) becomes less important for
control and he(s) more closely resembles shz(s), owing to the

decrease in hl(s). (Note that since T .1 in all cases, the

N=
position of the resonant peak does not change.)

+x3 is one component of the velocity signal. The noise x., is the

1
other.
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The trade-off in system scores is shown in Fig. 28. (Control
‘'rate score is not shown since cé = 50 ci here.) Note that the in-
troduction of a small (.05) velocity weighting results in a sub-
stantlial decrease in 05 (and oé) aécompanying the decrease in error
rate score. However, note that error score is not very sensitive
to q3. By readjusting the optimal gains 2¥, the system reduces
control and error rate variances at the expense of only small

increases in error score.

In general, the introduction of additional weightings into
the cost functional J{(u) will result in new control gains and a
trade-off 1n variances. The nature and sensitivity of the trade-
off will depend strongly on the resulting gains and the system
parameters A,b. There does not appear to be any general rules as
regards describing functions, spectra, etc. However, by studying
the consequences of introducing additional welightings, it may bé
possible to determine the existence of subjective weightings in
actual situations by "matching" the human response data.

K/s(s-1) Dynamics

As a further study of the model, we decided to investigate
the manual tracking of an unstable system. The dynamics considered
were those studied in Ref. 12 . The pertinent equations are
(xl = first-order noise disturbance, X3 = error, X, = error rate).

il(t) = -2 x,(£) + w(t) ; wy; = 20.94
iz(t) = x,(t) + x;(t) + u(t) (65)
k3 (8) = x,(%)
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The displayed quantities are y, = x3, Yo = X5 Note that the input‘
disturbance X enters the system in parallel with u(t) for this

case.

The model parameters that provided a best match to experimental
data were found to be Ty = .09, T = .2, p; = p, = -26 dB, Py = —30 dB.
The large deviation in observation noise ratios (-26 dB) from the
~-20 dB values found typically in most other situations was a most
unexpected result reported in Ref. 12 . In our sensitivity studies
we shall suggest a reason as to why the observation nolse was so
low.

A comparison of model "predictions" with experimental data is
shown in Fig. 29. The results appear very similar to those of K/s2
Dynamics (Fig. 5 ). This is expected. However, in this system
the high-frequency resonant peak 1s much more pronounced than it
was for K/s2 due to the inherent instability introduced by the
plant. Because. of this instability it is expected that input
parameter variations will have notable effects on model outputs.

We shall see that such is indeed the case.

N variations. — The effects of N variations are shown in
Figs. (30)-(31). Note that describing function variations have
much the same character as for K/s2 dynamics. Gains increase as

N is lowered. The greatest increase is at frequencies beyond the
resonant peak. Here, slight changes in Ty cause large changes in
the apparent resonance, due in great measure to the plant insta-
bility. Describing function phase lag varies slightly in the

region 5<w<l5 as the pole associated with 1, varies from 9 to 14

N
rad/sec. These same phase effects were noted in all the systems

previously studied.
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The effects of Ty upon normalized remnant are minimal,
especially for w>»l1.0 rad/sec. Thus, as observed in all previous
cases, remnant spectrum is, for the most part, not a function of
Ty In retrospect, the insensitivity of normalized remnant with
respect to Ty is expected. Varying g (hence TN) results in uniform
increases or decreases in all of the optimal gains 2¥. This in
turn uniformly increases or decreases the control power ¢uu(w),
without changing 1ts spectral "shape". Since remnant depends only

on the ratio Quur(w)/éuu (w), as in Eq. (39), Ty Will not appre-

i
ciably influence this ratio or the remnant.

The scores that result from ™ variations show the trends
expected: Error decreases as control power increases. Of partic-
ular interest is the high sensitivity of error and control scores
to ™ due to the plant instabllity. Note, however, the relative
insensitivity of error-rate. This probably arises since increases
in u (which tend to increase e) and decreases in e (which tend to

decrease e) have counterbalancing effects.

T variations. — The effects of time-delay changes upon human

controller describing function are shown in Fig. 32. The trends

are much the same as those of Figs. (11) and (21), although some-
what more pronounced. Gain decreases as T lncreases, except about
the high frequency resonance. Since the introduction of additional
time~delay can only have more of a destabilizing effect on the
overall system, the resonant peak sharpens.

The phase variations at high frequency are, of course, a

direct result of the delay e-sT, and

180°
m

Ap = TAw for w>1l0 rad/sec
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The changes in scores listed in Table 3 reflect the system's
instability. All scores are highly sensitive to t and increase
sharply (but linearly) as T is increased. Error and error rate
almost triple and control quantities double as T increases from
.15 to .25 sec.

Table 3

System Variances as a Function of Delay

TN=.09,Vy1=Vy2=—26 dB, V _=-30 dB
Variance =.15 T=,2 T=.25
e .137 .230 «379
e 1.23 1.91 2.95
34.8 48,4 68.5
4 x 1073 1.6 2.3 3.3

As was found in the cases conslidered earlier, normalized
remnant showed no appreciable change with respect to changes in rt.

Over the frequency range w>l.0 remnant varied by less than 1 dB
as 1 varied from .15 to .25 sec.

o, and p, variations. — As was found to be the case for K/s®

dynamics, variations 1n posifion noise, Vyl’ had little effect
upon system performance. As py was increased from -20 to -30 dB
there was no perceptible change in he(w). Scores increased by less
than 10% and normalized remnant increased by about 2-3 dB only at
frequencies below 1.5 rad/sec. The reasons for this insensitivity
are much the same as for K/s2: position information is relatively
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unimportant for control, i.e., he(s) = sh2(s), and the estimation
of velocity is not very dependent upon having a good estimate of
position.

On the other hand, a good estimate of velocity 1s most import-
ant for control purposes and system performance is indeed sensitive
to changes in p, as shown in Figs. (33)-(34). The variations in
describing function are very much similar to those due to ™ (see
Fig. 30). As p, decreases, |he(w)|.increases somewhat at low fre-
quencies and shows a marked increase beyond the resonant peak.

The similarity between ™ and Py variations, as regards their
effect on he(w), has been noticed before. These similarities are
not surprising since decreases 1in either parameter allow the feed-
back controller to respond more positively to velocity information,+

thereby increasing |he(w)| at high frequencies.

As (P increases, so does the normalized remnant. This increase
is particularly notable at high frequencies where velocity informa-
tion is most pertinent for control purposes.

System variances (Fig. 34) are very sensitive to b, as is
expected. Note that there is almost a 2:1 correspondence between
observation-noise-ratio and scores. Decreasing Py by 6 dB (i.e.,
a factor of 4) reduces scores by almost a factor of 2. This 'is a
much greater sensitivity than has been observed in other cases,
and is a result of the system's unstable mode. In this situation,
then, a substantial decrease 1in error score can be achieved by a

+Decreases in ™ allow a higher frequency content in u(t), while

decreases in (B allow for a more accurate estimation of velocity.
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moderate lowering of observation noise. It appears that the human
operator in performing this task was capable of lowering hls asso-
ciated observation noise (e.g., by "concentrating" harder) to take
advantage of the large decrease in scores that result. This lower-
ing of noise ratio coupled with the score sensitivities 1s discussed
further in Ref. 12 .

Motor noise variations. — TInasmuch as the input disturbance
to the system enters in parallel with the control signal, it is

expected that variations in Vm about the nominal of -30 dB would
result in only slight effects upon system describing function.
Indeed this was found to be the case. Since the motor noise is
treated as an additional (uncorrelated) input disturbance, increas-
ing P results in increased normalized remnant and in increased
system variances. For motor noise levels above -20 dB the model
predicts the closed-loop system to be essentially uncontrollable.
This 1is a direct result of our driving an unstable system with
wideband noise. (See Fig. 35)

Summary

In this section we summarize the results of our sensitivity
studies of simple manual control tasks (i.e., single input, single
display indicator). To avold repetition we summarize only the
salient effects of variations in each of the human response param-

eters Ty Tr Py P

™ variations. — Decreasing Ty increases the optimal feedback

gains. Describing function magnitude increases over the entlre
frequency range with a proportionately greater increase in the
high frequency range w>10. rad/sec. Phase and normalized remnant
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are affected little by TN.+

lowers the error score at the expense of increases in control rate

Decreasing Ty (i.e., decreasing g)
and control power.

1 variations. — Increases in time-delay are reflected by

increases in high frequency phase lag. Describing function gain
decreases, except about the resonant peak where increases in 7
result in a sharpef resonance. This seems to indicate that the
high frequency peaking can be associated in large measure with the
time-delay and compensating optimal predictor. Finally, all scores
increase monotonically with 1, in an almost linear manner.

Observation noise variations. — The noise ratios Py and the

Kalman filter play the major role in shaping the normalized remnant
spectrum. High frequency remnant is primarily influenced by s>
whereas the effects of p, are seen at low frequencies. P varia-
tions have the same general effect on describing function as have
Ty Vvariations. Variations in p, have little effect on h_(w). All
system scores increase with increases in either Py OT Py because

of the higher remnant introduced.

We found that model predictions are far less sensitive to
P1 (or Vyl) than to o, (or Vy2). This 1s because position (e) may
be estimated from rate (e) observation even when py is relatively
large. On the other hand, position information is almost useless
in estimating rate. Thus, increasing Py (for fixed 02) has limited
effect, but increasing s (for fixed pl) prevents the model from
accurately estimating error rate.

$Eh our studies the noise ratios Pys Pp were kept constant. Thus,

normalized remnant was the system quantity to be examined. How-
ever, one may wish to keep Vyi and Vm constant, in which case the

unnormalized remnant is the pertinent model output. Either approach
is valid provided that one stays consistent.
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Motor noise variations. — When the input noise disturbance
enters the system in parallel with the human's control input,

small amounts of motor noise have only minor effect upon model
outputs. However, as O is increased, the normalized remnant and
system scores (especially control related scores) increase. These
increases are a result of our treating the motor noise as an addi-
tional input disturbance to the system.

When the input disturbance does not enter in parallel with
u(t), motor noise prevents the Kalman estimator from integrating
the control signal to obtaln perfect state estimates. In this
case, small amounts of motor noise have a dominant effect on low
frequency remnant and describing function characteristics.

A Technique for Model-Matching

It is most important to be able to use the model to match
experimental data in a systematic fashion. This model-matching
is necessary to determine reasonable estimates for intrinsic
pilot parameters to be used in predicting performance in a new
situation. In addition, the model parameters themselves may be
useful as derived measures of performance. Thus, for example,
measuring observation noises by matchling data from simple tracking
experiments may prove to be a useful way of evaluating certain
displays. Under certain circumstances the derived measures can
be a good deal more sensitive than direct measures of performance.

One plausible technique for choosing parameters that match

model outputs with experimental measurements of scores, describing
function gain and phase, and remnant is the following:
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1. Choose a "reasonable" set of values for the human +
response parameters Ty, T, P, (or Vyi) and P (or Vm) .

2. Pick values of pl

result in good approximations to the measured remnant
spectrum.

and Py (or Vyl and Vyz) that

3. Adjust T such that model predictions match observed
high frequency phase measurements.

L, Adjust Ty until predicted gain (1.0<w<10.) matches
describing function data.

5. Choose a value of p_ (or V) that gives a match to
control score.

6. Compare all model predictions with the data. If
results are unsatisfactory,Tt return to step 2.

7. "Fine tune" Tn> ¥ P35 P The resulting values

are the human response parameters that best match
the data.

The above model-matching scheme is not meant to establish univer-
sal guidelines. However, it is a reasonable way for one to proceed,
based on the results of our sensitivity studies of simple manual con-
trol systems. Since T and N do not affect remnant, the observation
noises can be chosen primarily on the basis of matching remnant spec-

trum. T and T,, may then be chosen to match describing function data.

N
A mathematical criteria function that can be used to "grade" the

closeness of model predictions with data is needed in any matching

scheme. The precise form of this function would depend on the specific

T ~

€.8.5 Ty .1, 1= .2, = -20 dB, Py = -25 dB for foveal viewlng

P
conditions.

1"rAn adjustment of cost functional weightings d;s T may be called

for if results are continually poor.
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application. For example, it may be of greater importance to match
remnant spectrum than, say, scores in obtaining estimates of obser-
vation noise ratios. The criterion function would thus place rela-
tively more weight on those manual control characteristics that are
required to be more closely matched.

The determination of suitable matching criteria and matching
tolerances is a difficult, and important, problem. Its solution
would go a long way towards defining a standardized and systematic

set of procedures for extractlng model parameters from data.+

+A preliminary technique for extracting estimates of observation

noise associated with different viewing conditions 1is reported
in Levison [33].
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PREDICTION OF PILOT PERFORMANCE IN A HOVERING TASK

In the first three chapters of this report we developed an
optimal control model of the human operator and examined in detail
its application to the prediction of human response in some basic,
single-~axis control tasks. 1In this chapter, we use the model to
analyze a more complex control situation, namely the manual control
of the longitudinal position of a hovering VIOL-type aircraft.

This 1s not the first time that the model will be employed in
such a task. In a previous study (Ref. 17) we analyzed longitud-
inal hovering control for a particular VTOL configuration (XV-5A).
In that study semi-empirical techniques, involving a fairly exten-
sive preliminary experimental program, were used to determine most
of the parameters of the optimal control model. Then, using these
parameters, human performance in the hover task was predicted and
compared with data obtained from simulation experiments in which
skilled pilots executed the task. The results showed that the
model could indeed reproduce most of the essential control charac-
teristics of the pilots as well as closed-loopr system performance.
Good predictions of visual scanning behavior were also obtained,
using the optimal sampling model described earlier in this report.
Finally, a simplified technique for estimating average control
behavior and performance was suggested and partially validated.
This technique had the advantage that extensive pre-experimentation
was not required for the analysis.

Here, we willl show that the model may be used to predict the
effects on performance of changes in aircraft stability parameters.+

1~In Ref. 17 the only configurational change investigated involved

the presence or absence of an explicit display of longitudinal
velocity.
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The results that we obtain will provide furfher validation of the
model and greater insight into its use. More importantly, they
will demonstrate the real potential of the optimization approach
to manned-vehlcle systems analysis.

The Hovering Task

Vinje and Miller [ 20, 21] have conducted and analyzed a
series of simulator experiments involving precision hovering
control of a VTOL—type vehicle., As part of their investigation,
they measured the effects of variations in aircraft stability
parameters on rms hovering performance. As a further test of
our model, we shall attempt to predict these effects and corre~
late our results with the experimental data.

Briefly, the pilot's task was to minimize longitudinal posi-
tion errors while hovering in turbulent air.T Only longitudinal
motions were considered and the pilot was not required to control
the height of the aircraft. With these assumptlons, the follow-
ing linearized equations of motion were used to simulate the

hover task

Mu u+ M g-49g = —M6 § - Mu ug
(66)
Xu u - g - u= —Xu ug
where
ug longitudinal component of gust veloclity, ft/sec
u=x velocity perturbations along the x-axis, ft/sec
6 pitech attitude, rad
1.

The VTOL hovering experiments are described in detail in Ref. 20.
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q=é pitch rate, rad/sec

8 control stick input, in

Mu speed stability parameter, rad/ft-sec
Mq pitch rate damping, 1/sec

M control sensitivity, (rad/secz)/in
Xy longitudinal drag parameter, l/sec

g gravitational constant, 32.2 ft/sec2

The simulated gust ug was equivalent to first-order filtered
white noise with filter pole at .314 rad/sec. The rms level of

the gust, o, » was set at 5.14 ft/sec.

g

Thus, the equations of state for the task could be written
in the following form:

(0] [-.338 0o o o olful] [ o] (. ]
g 3 g 1
4 x, X, 0 0 -gllu 0 0
x | = 0 1 0 o Oflx|+]| o]|s +]|o0 (67)
3 M, M, 0 M 0flaq Mg 0
o | [ o o o 1 oflef o] |o

The pllots were provided with a Norden contact analog display
on which both aircraft attitude (8) and position (x) were indicated
explicitly. (The display is described in Ref. 20.) Hence, in
accordance with our usual assumptions, the displayed outputs were
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u 0o 1 0 0 o© u,
x|=]0 0 1 0 O u (68)
a 0o 0 0 1 © x
K 0 0o 0o 0 1] q
L B -

i.e., x,0 and their first derivatives u and g respectively.

The experiments that we will consider involve changes in Xu’
Mu and Mq about a common or "nominal" operating point correspond-
ing to values of -.1, .0207, and -3.0, respectively. For each
configuration, the subject pilot was instructed to select a con-
trol sensitivity MG that he considered "optimum" for performance
with that particular configuration. The parameter values corres-
ponding to the cases investigated here are listed in Table b,
The case numbers identifying the various configurations are those
assigned in Ref. 21.+

Table 4

Variations in VTOL Stability Derivatives

Case Xu Mu Mq M6
Nominal

(PH8) -.1 .0207 -3.0 431
PH1 0 .287
PH2 -.05 | 420
PH5 -.3 .516
PH6 -.1 0 .300
PHT -.1 .0104 .360
PH9 .0312 v o .481
PH10 .0207 -1.0 .369
PH12 ] .0207 -5.0 493

+We restrict attention to results for a single pilot (pilot B).
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Multiloop-Model Analysis

A closed-loop pilot-vehicle analysis of the above hover task,
using quasi-linear, multiloop pllot models (Refs. 5,6 ) was used by
Vinje and Miller in analyzing thelr data. We present the high-
lights of their approach in an attempt to provide further context
for the results we have obtained with our mode1.+

In applying the multiloop-model approach, one must assume an
a priori closed-loop system structure. In other words, an assump-
tion must be made concerning those loops "closed" by the pilot.
Vinje and Miller assumed the "series loop" model illustrated in
Pig. 36. (A parallel loop model for this task is also a possibility
(Ref. 8).) Once the loop topology has been decided upon, it is
then necessary to assume specific forms for the individual trans-
fers comprising the pilot model. For the structure of Fig. 36
this means choosing fixed forms for Yp and Y . The forms

P
X e
chosen by Vinje and Miller were

—TxS
Kp (TL s+l)e (69)

pX X X

<
1l

—Tes
o er(TLes+l)e /(TNs+1) (70)

Y

In Egns. (69-70 ), the "neuromuscular lag" (TN), the 6-loop trans-
port lag (Te), and the x-loop transport lag (Tx) were considered
to be fixed parameters with values of .35 sec, .09 sec and .08 sec,

respectively; the gains (Kp ,Kp ) and the lead time constants
0 X
(TL ’TL ) were assumed to be "adaptable" parameters, chosen by
0 be

*Again, detalls may be found in Reference 2].
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the pilot to achieve certain deslred closed-~loop characteristics.

Inasmuch as Yp and Yp cannot be measured directly in this
X 0
task, Vinje and Miller devised a technique for "identifying" the

adaptable parameters. In particular, they iterated on er, pr,
TLe and TLx until the rms values Oy 9% % and oq computed by
using the closed-loop model of Fig.36 "matched" the corresponding
rms hover performance (as measured in the simulator experiments)
to within 0.5%. Vinje and Miller dild not use rms control activity
(06) in thelr matching procedure in an attempt to minimize the
effects of ignoring pilot remnant in the computation of the pilot-
model adapted parameters. However, they compared measured values
of Os with those obtalned from calculations based on the computed
pilot-model parameters and found that these values of Og differed,

on the average, by about 17%.

Once values for the parameters of Y and Yp are given, it
X 0
is possible to compute various loop closure characteristics, e.g.
inner- and outer-loop crossover frequencies and phase margins.
The inner-loop characteristics are obtained from Bode plots of
Yp s+ [8/8]. The outer-loop characteristics are calculated by
6

assuming the inner- (pitch) loop is closed; Bode plots of

v Yp Yp [x/6]
X = X 6

yield the deslred results.
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Before leaving this discussion of the multiloop analysis, it
is worth repeating and re-emphasizing that the pilot-model adapted
parameters and the computed loop closure characteristics are
derived measures of human performance that are designed to provide
additional understanding of thepilot's behavior. The only direct
measures made by Vinje and Miller in their experimental study
were the measures of closed-loop rms hovering performance
(ox, O, Tg> oq, 05).+

Predictions with the Optimal Control Model

In this section we present the results of applying the optimal
control model of the human operator to the analysis  the hover
task described earlier. We begin with a brief discussion of the
choice of parameters for the optimal control model. Then we pre-
sent and discuss model predictions for the various configurations

listed in Table 4. We end with a brief summary and discussion
of the results.

Model parameters. — 1In order to apply our model to this task,
values for Tye T> the pi's, and Oy 25 well as cost functional
welghtings had to be chosen. We felt that, with respect to those
parameters related primarily to intrinsic human limitations,
values representative of those used in the single-axis studies
constituted a good a priori choice. Thus, we let N T .1l sec,

. _ _ _ ++
T = .15 sec, Py = Py = P3 = py = -20 dB and P = ~25 dB. Note
that all the observation noises were set equal and at their

TAnother (subjective) measure, namely, pilot opinion rating was

also taken but we will not discuss thils measure at length here.
Noise ratios were chosen within + .5 dB and =t
of .1 sec for all cases.

N Was within 10%
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"single-axis™" values.+ It is significant that we were able to keep
this (initial) set of model input parameters fixed throughout the

entire subsequent study.

The choice of a "subjective" cost functional is a bilt more
subtle. Recall that the pilots were instructed to minimize posi-
tion error (ox). However, in order to. accomplish this the pilot
must suppress pltch errors inasmuch as such errors introduce dis-
turbing longitudinal forces. In addition, one may expect that
pllots try to avoid excessive attitude changes during the process
of minimizing hovering errors. Accordingly, it seems reasonable
to include a pitch or pitch-rate term in the cost functional; we
chose to add a term proportional to mean-squared pitch rate, cé.
Given this choice, a subjective weighting for pitch-rate must be
selected. In the absence of any data, one might chocose this
weighting by asking pilots how much position error they would
trade for maintaining low attitude rates. If, for example, they
were willing to accept a mean-squared hovering error of 1 ft2 in
order to avoid mean-squared attitude rates in excess of 0.5
degz/sec2 (=,.01 rad2/sec2) then one might select a pitch-rate
weighting that was 100 times greater than the position weighting.
For this study, such a gquestioning of pilots was not possible.
We, therefore, picked the pitch-rate welighting on the basis of
the measured scores for the "nominal" configuration. In that
case, values of ci and og of approximately 1.2 ft2 and .0024
radz/sec2 were found. On this basis, we selected a pitch-rate
weighting of 400 and we used thils value in all subsequent calcu-
lations. Thus, the cost functional for this analysis was

2

- 2 2
J = oy + Loo o4 + g of (72)

+This is a reflection of the fact that an integrated display was

used so that visual scanning did not appear to be necessary.
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1.

where g was chosen so that Ty = .1 sec.

Nominal case. — We now compare model predictions with measured
and derived data for the nominal case (PH8 in Table 4 ).
and predicted scores are compared below in Table 5, The measured
values are averages of ten runs and the quantities in parenthesis
indicate the corresponding standard deviations. It can be seen

that the agreement between predicted and measured scores is
excellent.

Measured

Table 5
Comparison of Measured and Predicted Scores

Nominal Configuration (Xu=-.1, Mug=.667, Mq=—3, M6=.431)

Gu Gx Uq Ue 05
Measured |.79(.09) | 1.16(.10)] .050(.003)] .032(.002)] .59(.03)
Predicted} .82 1.08 . 055 .036 .63

It would be desirable to obtain comparisons of measured and
predicted frequency domain data for this study that might provide
a more complete validation of the model. Unfortunately, the data
of Reference 21 does not include frequency domain measurements.

Instead, the fixed-form expressions for Y and Yp
X 0
TIn a recent study aimed at developling a scheme for predicting

pilot ratings for VTOL vehicles, Anderson [22] suggested that pilots

might attempt to minimize a performance measure of Oy + lOoq
This suggestlon was based on ad hoc considerations, and a rough
correlation with data (including that of Ref. 21). In terms of
a quadratic performance index, Anderson's criterion becomes

2 2

O + 200xcq + IOOGq. Noting that in the nominal case ox== ZOcq,

we see that the piltch-rate weighting of U400 is not significantly
different from Anderson's weighting.

were assumed
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and the parameter values (K X T » Ty, ) were adjusted to
X

3 3
Py Px 0

match scores.

In an attempt to correlate the multi-loop structure of our
optimal-control-model with that of Vinje and Miller's model, we
simply computed the equivalent transfers, Yp and Yp in the

) X
following manner. From Fig. 36, we see that the control input

§ ==Y Y x-Y_ 6 (73)

On the other hand, the optimal control model of the human operator
yields (see Eq. (23)).

§(s)

h y = hy(s)uls) + hy(s)x(s) + ha(s)als) + hy(s)e(s)
= (sh1+h2)x(s) + (sh3+hu)e(s) (7%)

Comparing equations (73) and (74) gives

sh, + h, = =Y (75)
3 4 Pg

sh.+h
17%2

Consequently, with these expressions for Yp and Yp ,» It is pos-
6 X
sible to use the optimal control model to compute equivalent

"inner" and "outer" loop characteristics, just as 1s done in the
fixed-form multiloop analysis.
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Figures 37-40 show the results of performing some of the fre-
quency domain calculations for the "nominal" configuration. (As
a matter of interest, correlated and uncorrelated control spectra

are shown in Fig. 37.) Bode plots of Yp and Yp , as computed
6 X
from Eqs. (75) and (76), are presented in Figs.38 and 39. Also

shown in these figures are the fixed-form Ype and Y . correspond-
ing to the parameter values (er, TLe, pr, etc.,) determined by

VinJe and Miller. As can be seen, the corresponding Ype—transfers
are in excellent agreément up to about U4 rad/sec; correspondingly

good agreement between the Yp -transfers is evident up to about
X
1.5 rad/sec.

]
| Pg ¢
sary to determine "inner"-loop closure characteristics, is pre-
sented:r We find that the optimal control model yields, for the
piteh loop, "cerossover" frequency and phase margin of approximately
3.2 rad/sec and 30 degrees, respectively. Vinje and Miller obtain
a pitch loop crossover frequency and phase margin of 3.1 rad/sec

In Fig. 40, the Bode plots for the transfer %Y : s heces-

and 8 degrees. Similar computations for the "outer" or position
loop result in model crossover and phase margin of 1.1 rad/sec

and 21 degrees as compared to values of 1.0 rad/sec and 15 degrees
derived by Vinje and Miller. Thus, the agreement 1n these charac-
teristies is good, with the optimal control model providing slightly
greater stability margins.

+The dashed portions of these curves correspond to what we believe
are reasonable trends in the data. Unfortunately, our programs
were designed to compute quantities at discrete frequencies (cor-
responding to values at which we normally measure). Time did not
permit the recomputations necessary to define these frequency
plots in more detall.
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Thus, the loop closure characteristics reveal that the Yp and

8
Yp predicted by the optimal control model agree closely with the
X

derived values of Vinje and Miller up to frequencies slightly
greater than the respective loop crossovers. The disagreements
at higher frequencies cannot be resolved on the basis of the
available data and they do not appear to be significant from the
standpoint of system performance. We can be reasonably certain,
however, that the high frequency deviatlons of the Yp 's result
from the longer time delay and the inclusion of the predictor in
the optimal-control model.

Effects of pitch rate damping, qu: — Predicted and measured

rms-scores as a function of changes in pitch rate damping (with
other derivatives held at '"nmominal" values) are plotted in Fig.41.
It should be re-emphasized that no changes in the parameters of
the pllot model are made in computing the effects of changing
alrcraft parameters. Agalin, agreement is quite good, especially
-5.0, all the pre-
dicted scores are within the standard deviations of the data and

for the cases with higher damping. For Mq

we have already seen similar agreement for the Mq = -3.0 case.
Model predictions are poorest for the configuration with the

lJeast damping (Mq = -1.0), although the maximum deviation between
predicted and measured scores does not exceed 25%. Unfortunately,
it is difficult to assess the true mismatch between model scores
and data for this case because standard deviations of the measured
averages were not availableJ++

.l.

The physical significance of the changes in various stability
derivatives and the effects on aircraft response to control

or gust inputs will not be discussed here. A detalled and
1lluminating discussion may be found in Reference 21.

++Standard deviations were published for the results of a second,
different, subject. As might be expected, standard deviations
increased as damping decreased.
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What 1s perhaps most surprising about the score data for the
low damping case 1is that all the scores predicted by the optimal-
control model of the human operator exceed those achieved by the
pilot. This suggests that the observation nolse-ratios in the
model may have been too high. We decreased these noise-ratios
to approximately -23 dB and found that all predicted scores were
then within 10% of measured values. This 1s an interesting result
because 1t implies that the pilots became less "random", in an
attempt to maintain the lower scores. Or, in Levison's terms
[23] the pilots worked harder to achieve a criterion level. This
correlates with the fact that the Mq = -1,0 case was rated unsatis-
factory by the pilots [21] whereas the cases with higher damping
were rated satisfactory.

The equivalent Yp and Yp obtained from the optimal control
X

model are plotted in Figs. 42-43. Naturally, the simplified fixed-
form expresslons of Reference 21 will not duplicate the low-

frequency variations seen in the Yp transfer with Mq = -1.0.
]
Nor will the high frequency behavior of corresponding transfers

be duplicated for the reason mentioned earlier. However, it can
be verified that in the neighborhood of crossover, both models
yleld pitch and position loop gains that agree quite well. Thus,
we found inner and outer loop crossover frequencies that agreed
with those of Reference 21 to within plotting accuracies.

Effects of speed stability parameter, Mu‘ ~ The effects on

predicted and measured scores of changing the speed stability
parameter M  are ‘shown in Fig. U4U4., The agreement is again very
good except for the smallest value of Mu=0.v The less precise
agreement for the Mu=0 case 1is probably attributable to a value
of motor noise that is too small. In this case there is no gust
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component entering in parallel with the stick so the Kalman filter

can obtain very good estimates of q@ and 6. As we saw in an earlier
chapter (and in Reference 17), such a situation may require values

of motor noise somewhat greater than -25 dB to model the human

operator accurately.*
Equivalent Yp and Y transfers for the cases Mug = .33 and
6 X
M,& = 1.0 are shown in Figs. b5-46 ., vVariations in Yp with M g
' 0
take place almost entirely below 1 rad/sec. (The nominal Y for

Pg
Mg = .667 falls within those shown.) In the neighborhood of

pitech loop crossover (~3 rad/sec), pitch loop gain decreases

very slightly with increasing Mug., This was also true for the
fixed-form model of Reference 21. The variations in pr (Fig. 46)
with Mug are not very dramatic, with relatively small changes in
gain appearing to be the principal effect. It should be noted
that the position gain of the optimal control model decreases

with Increasing Mug, whereas the Kp of the fixed-form model
b's
shows the opposite trend. However, the total variation 1n posi-

tion loop gain for the fixed-form model is less than 2 dB and the
observed trend may not be significant.

Effects of variations in longitudinal drag parameter, Xu' -

Predicted scores were computed for various values of X (with Mq

and M s kept at their nominal values) and are presented along
with measured data in Flg. 47++ Again, the data agree almost

TNote that moderately higher values of motor noise would not in-
crease the scores significantly in the remalning cases examlned
in this chapter because of the relatively large nominal value
for M g.

u

1""Frequency domaln data were also computed but they evidenced
simlilar phenomena as in the other cases and are therefore not
presented.
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everywhere; major trends are reproduced and actual values are in
close agreement. The only exception is the Xu = -,3 case where
the model predlicts lower position, and higher pitch scores than

were actually measured.

Predicted and measured scores could be brought in closer
agreement for Xu = -.3 by increasing the pitch rate weighting.
We therefore obtained model predictions for a welghting of
qy = 1000, a two and one-half-fold increase. The results, along
with the measured values and those obtained with the lower weight-
ing, are presented in Table 6.. (Numbers in parentheses are

standard deviations.)

Table 6

Score Comparison for Different Pitch Rate
Weightings in High Drag Configuration

’ %u oy cq Og Os
Measured | 1.67(.20)] 2.88(.45)] .069(.005)] .064(.005)] .76(.07)
qu=400 1.58 2.10 . 095 074 .82
q),=1000 1.66 2.52 .079 .070 .68

Thus, it would appear from these results that the pilot was un-

willing to accept the higher pitch rate scores assocliated with
the larger turbulence (Xu multiplies the input)+ and increased

his pitch rate weighting accordingly.

It is 1nteresting to note

that thls configuration had the poorest pilot rating of all the
cases that we investigated.

*Qinje and Miller also draw the same inference from their data.
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Summary and remarks. — We have applied the optimal control

model of the human operator to predict performance in a series

of longitudinal hovering tasks. The configurational changes

that were considered significantly altered the system response

to both control and disturbance inputs, yet the model was able

to predict performance with exceptional accuracy in almost all
cases. Moreover, this was accomplished with a fixed set of model
input parameters, whose values were virtually identical to those
used in single-axis studies. Also needed in the analysis was a
"subjective" welghting on rms pitch-rate error (i.e., a measure
of performance in the "additional loop"). Results for all but
one case were quite good keeping this parameter invariant and
reasonable methods for selecting its value appear to be generally
available.

Inasmuch as no frequency domain measurements were available
for comparison, the optimal control model was used to predict
describing functions that corresponded to the "loop closing”
pilot transfer functions that are frequently employed in "classical"”
multiloop manual control analyses. These "equivalent-optimal™
describing functions were compared with fixed-form transfer func-
tions that had been derived in the original analysis of the data
[21]. The fixed-form transfer functions were of the '"crossover-
model" genre, and had some pfeselected parameters (time delays
and neuromotor time constant) and some parameters (gains and lead
time constants) that were adjusted to match measured score data.

Invariably, the optimal control and fixed-form describing
functions agreed guite well in the neighborhood of loop "crossovers."
This 1s not surprising because the optimal control model predicts
the measured scores and the fixed-form model, which is designed
primarily for the crossover region, is adjusted to matech the

128



"same" measured scores. For frequencies outside the crossover
range, agreement between the differently obtained describing
functions 1s generally not good. This is particularly evident
for pitch-loop pilot describing functions. Those describing
functions obtained from the optimal control model exhibit much
more complex behavior than do the simpler fixed-form transfers.
Many of these complex response characteristics are quite similar
to those predicted by the model, and also observed experimentally,
in single-axis tasks. On this basis we believe that measured
describing functions wouid bear a closer resemblance to those
predicted by the optimal control model than to those obtained
from the fixed-form model with "measured" parameters.

There were three cases for which the optimal control model did
not yileld very accurate score predictions. For one of these cases
(Mug=0) the discrepancies could be largely attributed to our
treatment of motor noise. In the other two cases, more accurate
predictions were achieved by changing model input parameters. In
one case (lowest pitch rate damping), the observation noise ratio
was decreased, and in the other case (highest drag) the pitch-rate
welghting was lncreased. It 1s interesting and important to note
that both of these cases were ones in which significantly poorer
pilot ratings were obtained. It would appear to be more than
coincidental that a change in the basic model parameters corre-
lated with a substantial degradation in pilot rating. Although,
much work remains to be done, we are reasonably convinced that
the optimal control model will ultimately provide a versatile and
fairly general apptroach to predicting aircraft flying qualities.
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EXTENSIONS AND FURTHER RESEARCH

There are various problems deserving of further research that
arise in our modern control approach to human operator modelling.
Some of these problems have been mentioned briefly earlier in the
report. In this chapter we discuss our preliminary research on
several problems of a theoretical nature that relate to the model's
development, extensions and practical applications.

A New Characterization of Motor Noise

Recall that motor noise was included in our optimal control
model in a somewhat artificial way to prevent the XKalman estimator
from knowing perfectly the control signal, u(t). In this section
we present a new method for treating motor noise that has more
physical and intulitive appeal. In addition, our preliminary re-
sults show that this new representation gives model predictions
that more accurately reproduce experimental data, especially in
the low frequency range, w<l rad/sec.

Theoretical development. — Our new approach is to model
directly the fact that the human can obtain only imperfect obser-
vations of his own outputs. We thus associate with both u(t) and
u(t) "observation" noises vu(t) and Vﬁ(t) with covariances V, and
Vﬁ, respectively. Therefore, the human is assumed to percelve

up(t) u(t-t) + v, (t=1) (77)

ﬁp(t) u(t-1) + v&(t-T) (78)

and he must estimate u(t) and/or u(t) for purposes of control. In
this manner we treat motor noise in the same conceptual way as we
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treat observation noise Xy(t)-

This imparts a conciseness and

uniformity to the model's representation of human limitations.

The "observations" of Eq. (77) are included within the opti-

mization framework as follows.

Recall that in developing the

human operator model we defined an "augmented" state vector

X = (x,u) where

x(t) =
y(t) =
A
ﬂo =
1)

Aox(t) + bou(t) + w(t)

glx(t) = displayed outputs

1o
(@]

k=3

It was found that the control law

u(t) = -2

minimizes J(u) based on noisy observations.

x(t)

(79)

. g] (80)

(81)

x(t) is the best

estimate of X(t)+ and the gains ) are given by Ea. (9).

Since u(t), and not u(t), is explicitly generated by the
feedback controller, we may include the "observations" of Eq. (77)

directly within the optimiza

additional output

+ - -
In the absence of motor noise Xn+1 = Uu.
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Yp () = ult) (82)

with an associated "observation™ noise vy (t) = vu(t). Thus,
m+l
u(t) is treated as an "observed" or "displayed" output that must

be estimated by the feedback controller. Unfortunately, it is
not possible to treat u(t) in this same simple way. However, we
can show that as regards the Kalman estimator, it is possible to
represent the model's imperfect perception of u(t) by adding a
driving noise govﬁ(t) in parallel with u(t) in Eq. (79).

In order for this latter construct to truly model observational
or sensory effects it 1s necessary that Vﬁ(t) be much smaller than

u(t), i.e., its explicit driving effects on the closed-loop system
must be negligible. Fortunately, this appears to be the case.
We have found, typically, that

i.e., Vﬁ(t) when normalized to oé has a white-noise power density
level of -U40 dB. Thus, over the frequency range 0O<w<30 rad/sec.,
Vﬁ(t) will directly contribute less than 1% td the value of oé.
However, v&(t) can have a large effect on the Kalman estimator
which, in turn, can greatly influence system variances.

Under our new assumptions, the Kalman filter generates the
best estimate i(t—T) from the perceived quantities
ip(t) = colly (£),u (£)] and ﬁp(t) according to

~

$(t-1) = A (t-1)+b, u (£)+% c'v [)Lp(t -C x(t-1)1  (83)
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where the error covariance matrix z satisfies

-~ ~ ~ ~~_1~ ~
= 1 P 1
0 = Apz + L Ay + Wy +DbyVeby ~ L C y,ocr (84)
with

c V. 10

I I

= |- 5 Vy =|=-t—" (85)
0 1 1 Y 0o 1V
= 2 1

The best estimate of the current state, i.e., x(t) is generated by
a least-mean-squared predictor as in Eq. (19).

Once the variance equation (84) is solved for § it is possible
to generate predictions of closed-loop response such as in
Egs. (20)-(26). These later*equations remain valid in the present
context with the replacements (TNS+1)*S, gfi, gl+50, gl+go, §+i,
etc, In addition, the scanning results also remain valid, where
the scanning cost I(w), (see Eg. 56) is now given precisely by

A At '
I(w) = <A e_O')z<A_e_o ) S (86)

Relationships with earlier method. — In our revised approach
for including motor noise it is no longer necessary to single-out
the lag network (TNS+1)_1 or to define a supposed '"commanded" con-
trol signal. In our new scheme vehicle outputs and control inputs
(i.e., human outputs) are treated as quantities that are perceived
by the humam.-r Time-delay and "observation" noise are assoclated

+Typically, vehicle outputs are observed visually and control
inputs are sensed through muscular feedback. Kinesthetic cues
may also be included.
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with each perception. Thus, observation noises relate directly
to physical quantities that define the nature of the man-machine
interface. Figure U8 shows the closed-loop structure of the re-
vised model.

It 1s worthwhile to point out that there exists a mathematical
comparison between the old and new motor nolse representations. 1In
the latter case 1t is possible to show that the error associated with
estimating u(t) from the observations (77) is given approximately by

&,(8) = —ge (t) + ve(t) + 6V (t) ; § = (vﬁ/vu)% (87)

and has power density spectrum,

v, + 62Vu 2v_ 50,
) (s) = = .
€€y s2 + 62 5_2s2 + 1

This suggests that if we choose Vu and Va to satisfy
2V =V
u

2 _ 2
§ u u

TN (89)

[
<
~
N
]

then the model results that are obtained with our new approach
should approximate predictions using the earlier model.+ We found
this to be true in several cases analyzed.

New model predictions. — The numerical determination of
suitable values for Vu and Vﬁ, or the noise ratios

+In the old method a driving noise with power density spectrum

Vm/(1§32+1) effectively represents the "estimation" error in u(t).
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= 2 (90)
Py = Vu/"cu

] 2
Py = Vy/Tmoy

i1s a matter for further research.f-These quantities depend on the
type of control manipulator (e.g., force stick, position stick,
etc.) as well as on intrinsic human characteristics. In general,
one might expect Vu (or pu) to be large, owiﬁg to the difficulty
in accurately sensing position through muscular feedback. On the
other hand, sensing of movement is more naturally accomplished
and Vﬁ (pﬁ) should be small. Under these conditions (V_ large,
Ve small), the estimation error eu(t) given by Eq. (87) will have

=

<}

considerable power at only low frequencies i.e., w < u o, Thus,

=

u
our new motor-noise representation would be expected to have its

dominant effects on system response in the low frequency range.

Accordingly, we applied the model in a preliminary manner to
study the manual control of k, k/s and k/s2 dynamics. We varied
both model parameters Vu and V& to give a good match to experi-
mental data. (A force stick manipulator was used in the actual
experiments.) The other human response parameters TN’ T, Vyl’ Vy2
were kept at (approximately) the values used previously. It was
found that relatively small values of Vﬁ (typically Py = ~40 to
-50 dB), and neglecting the observations of u(t), i.e., Ve = %

gave model results that were entirely consistent with the data.tt

1-7
Model matching techniques, coupled with the results of basic
experiments, could prove extremely useful in such a study.

T+
Thls seems to verify that motor sensing of position i1s grossly

inaccurate whereas sensing of rate is easily accomplished.
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The results for k/s dynamics are shown in Fig. 49. The motor
nolse parameters are Py = -40 dB, Py = - Note that the major
difference between the describing function results of Fig. 49 and
those obtalned earlier (dotted lines in Fig. 49) lies in the low-
frequency range as expected. Observed low-frequency phenomena
(e.g., phase drooping) are reproduced with an accuracy previously
unobtainable. In addition, our results have shown that changling
Vﬁ causes large variations in the low-fregquency phase lag but does
not greatly affect other system measures. Thus the large varia-
tions in low-frequency phase observed experlmentally may be related
to intersubject variations 1n the parameter»p&.

On the basis of these preliminary studies 1t appears that our
new treatment of motor noise provides a better representation of
the human's motor limitations and is capable of duplicating more
accurately human response characteristics. Further results are
needed to verify these conclusions, however,

Optimal Estimation with Output Related Noise

Recall that in applylng the optimal control model of the
human operator to foveal viewing conditions, the observation
noises Vyi(t) are assumed to scale with their associated variances,
viz

2
Vs = 0y E{yi} : 1=1,2,...,m (91)

The application of the model thus requires iterating on equations
of the form

0=PA +AR+W-RCVCR (92)
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and
1 “ _— ' -1
eé-TPeAT + I eégeé-r(f_ﬁ'+ég+y)eé Teé-cdc c'

0

T
H
E{yy'} = ¢ J eyl 94 4
0

(93)
in order to adjust yy such that Egq. (91) is satisfied.

In this section (and Appendix A) we present a method for
solving Eq. (92) directly, given the noise ratios Py thereby
eliminating the bothersome iteration process.

The method we use to solve Eq. (92) is based upon the results
of Refs. 24 and 25 . The following theorem is particularly
important:

Theorem 1: Let gk, k=0,1,... be the (unique) solution of the
linear equation

0 = PAl + APy + W+ L[R+ N(R)IL} (94)

where II(*) is a linear matrix function and

AL, =4 -~-LC

2k = == ,
) (95)
Lk = Ek_lg'[E + E(Ek_l)] k=1,2,..
and where L, is chosen such that go>g.
Then 1im gk = P is the solution of
ke -
O=PA +AP+W-PC[R+IRICE (96)
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Clearly, this algorithm will be of use in solving Egq. (92) since
Ky is in fact a linear function of P. The prcblems are to first
define the linear operator g(g) in terms of system parameters and
to then develop a simple means for solving Eq. (914).+ These prob-
lems are solved completely in Appendix A. All necessary equations
are included.

In order to use the computational algorithm it 1is necessary
to choose an L such that P  1s positive definite. This is a
nontrivial and presently unsolved problem. One scheme that we
have found useful is to first choose a (diagonal) matrix y& with

Vg = B0y (Ryy) (97)
where
T ® -
t 1 |
R=¢C J eAyel 940 + J B0 ATy A T A 055 | ¢ (98)
0 0

and where B is an adjustable parameter (typically B=2-5). We then
solve the variance equation

Ba+afru-BovicE-0 (99)
for E and set

L =38 cvt (100)

o T Iy

Tyhen I(+)=0 the computational algorithm 1s identical to that used

to solve the variance equation. (See Refs. 24 and 26 .)
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If this choice of Lo does not result in go being positive definite
we increase B in Eq. (97) and repeat the process.

We have developed computer programs for solving Eqs. (91)-(93)
directly, given the noise ratiocs Py We find typically that the
above iterative scheme takes 3-4 times longer to converge than does
a single solution of the"standard"variance equation (18). Since
several on-line iterations of the standard equation are usually
needed before the noise levels are properly adjusted, the direct
approach can result in a substantial saving of time and effort.

Manual Control in the Presence of System Nenlinearities

Our optimal control model of the human operator was derived
under the assumption that the system being controlled is linear.
However, it is possible to extend the optimization framework to
include those system nonlinearlties that bound and/or limit the
control input signal. To be more precise, the linear state equa-
tion (1) can be replaced by

x(£) = A x(t) + b ¢(u(t)) + u(t) (101)

where ¢(*) is a single-input, single-output, memoryless nonlinear
element. An example of ¢(+) is the saturation element

a u>a
¢(u) = sat(u) ={ u Jul< a (102)
-a u< -a

which is typical of the characteristics of a limited or "backup"
controller.
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With the inclusion of a nonlinear element in the control loop,
we now assume that the human behaves optimally subject to his own
psycho-physical limitations and to the system limitations implied
by the nonlinearity. Thus, for the input constrained system of
Eq.(101), we assume that the human chooses his output u(t) to mini-
mize the cost functional

n
J(u) = }E:qioii + oi(u) + g oﬁ (103)
1=1

based on displayed information.

There are numerous approaches to the study and optimization
of nonlinear systems of the type (101). However, techniques of
statistical linearization [27] find particular application in the
present context since we assume that the signals circulating in
the closed-loop system are Gaussian. (See Wonham and Cashman [28],
for example.) The essence of this approach 1s to approximate the
nonlinearity ¢(+) by an equivalent gain or random-input describing
function k(cﬁ). Therefore, from a statistical viewpoint we repre-
sent the nonlinearity by

olut)) = k(oi) - u(t). (104)

For example, the describing function associated with the saturation
element (102)is [29]

k(ci) = erf[—2 (105)

VA o,
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The above quasi-linear approach is particularly appealing in
that the overall control system to be optimized is linear, but
with an effective galn b = k(c )b that depends on the variance
of the human's output u(t) T Thus, it is possible to optimize the
new system (101) with the same mathematical techniques as were used
to develop our basic optimal control model. Furthermore, most of
the usual measures of human performance are preserved and the
effects of system nonlinearities on the human's gain, phase lag
and remnant can be investigated. However, insofar as k(+) is
highly dependent on 0,2 an accurate prediction of the control
varliance is required. Fortunately, our model is capable of making
such predictions, even in cases where controller remnant contributes

significantly to this variance.

There is an immediate result of coupling linear optimization
theory with describing function analysis: If, in the absence of
nonlinearity, the control strategy u¥(x) minimizes a quadratic
cost functional of the form (103),it ig possible to show that the
nonlinear system (101)will be stable with u = u¥*(x) provided

k(oi) > 1/2 (106)

Thus, it is always possible for the human to control the nonlinear
system by means of a linear control strategy, provided the describ-
ing function gain is sufficiently large. This is a powerful (and
somewhat unexpected) result since it depends only on intrinsic
properties of optimal linear systems and not explicitly on the
actual system being controlled.

+Clearly the validity of such an approach is highly dependent on

the degree to which the nonlinearity can be approximated by an
equivalent gain. A good approximation is not always possible [30].
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Note that this result can be used to obtain bounds on permis-
sible values of oi once the nonlinearity ¢(.) is specified. Altern-
atively, if a reasonable a priori estimate cf oi can be found,

a priori restrictions can be placed on the degree of the nonlinear-
ity. PFor example, consider the saturating nonlinearity of Eq.(102).
In order for k(oi) > 1/2 we require

erf[—2 —\> 1/2 (107)
V2 . oy

or, approximately,

a>—=a (108)

When this inequality holds, manual control of the nonlinear system
(101)will be feasible.

To i1llustrate the analysis techniques we applied the above
approach, using our optimal control model, to a simple manual
tracking task for k/s dynamics. The input disturbance is a first-
order noise with a break frequency at 1.0 rad/sec. The control
task is to minimize mean-squared tracking error. The controller
input nonlinearity ¢(-) is the saturation element (102).

As a first analysis we obtain an a priorli bound on the satura-
tion level, a, for which stability is guaranteed. From Eq. (108)
we have a>.707 Cyt A reasonable a priori estimate of 05 is the
variance of the human's control signal in the absence of nonlin-
earity. For this example oﬁ = 4,0, as predicted by our human
operator model, (associated mean-squared error = ,039), so that

if a>l.4 the system will be stable.
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Theoretical predictions of mean-squared error as a function
of saturation voltage are shown in Flg. 50, Also shown are several
‘experimental data points for this same situation, obtained from
the results of Duggar, Mannen and Hannen [31]. The vertical line
AA' corresponds to a = 1.4, It is clear from the figure that a
saturation voltage less than 1.4 rapidly tends to be undesirable.
For a = 1.4 there is already a 3-fold increase in mean-squared
error over no saturation. However, for a = 1.3 and a = 1.2 there
is a 5-fold and 8-fold increase, respectively.

The close agreement between experimental and theoretical re-
sults further underscores the potential of this approach to non-
linear system analysis. The major features of the technlque are
its simplicity, its ability to treat both simple and complex sys-
tems within one conceptual framework, and its being a natural
extension of our earlier results.

Prediction of Task Interference and Workload

Although techniques for using our model to study task inter-
ference and workload have been developed elsewhere (Ref. 12), we
feel that it 1s useful to indicate the underlying concepts here.
In this way we can show how the human operator model might be
applied to solve higher level problems such as predicting task
interference, workload and pilot opinion.

Because the human can exert only a limited amount of physical
or mental effort, his performance on a given psychomotor task de-
grades as he 1s required to perform more and more tasks simultan-
eously. The existence of these interference effects requires that
we take into consideration the "workload" that is expected to be

imposed on a human in any situation where mﬁltiple tasks must be
performed.
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Laboratory studies have led to a model for interference that
applies when K independent, continuous control tasks are performed
(Refs. 12 and 23 ). The human operator is assumed to have a
fixed amount of central processing capacity (or "attention") that
1s distributed among the tasks to be performed. This limltation
imposed by human capacity is accounted for by modifying the effec-
tive observation noise ratios. We associate with the k-th task m,
displayed outputs yl,yz,...,ymk and m, nolse ratios pg,pg,...,pg
that are measured in performing task k alone, i.e., in a single
task environment. When the human is required to perform the K
tasks simultaneously, these nolse ratios are modified according to

of = g of 5 1=1,2,..0,m , k=1,2,...,K (109)

k

where the fk's satisfy

K
E fk =1 (110)
k=1
The fk's are assumed to be adjusted by the human, subject to
the constraint of Eq. (110),to optimize system performance. The
optimal control model can be used to predict this adjustment as

well as to predict the resulting human operator describing func-~
tions and system performance measures.

The workload assoclated with a specific task is often defined
as the "attentional demand" of that task. The representation of
task interference suggests a metric for operator workload that is
consistent with this definition. Since the guantities fk sum to
unity (analogous to a fixed amount of total attention), we asso-
ciate fk with the fraction of attention devoted to the k~th.subtask.
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We then define the workload index of a subtask as the minimum value
of fk that will provide satisfactory system performance. Looked

at another way, workload is directly related to the sighal-to-noise
requirements imposed by the pilot's response strategy.

The optimal-control model has been used to obtain predictlons
of the workload index for various control situations. These pre-
dictions have been tested against pilot opinion data found in the
literature, and good agreement has been found between predicted
workload and pilot opinion (Ref. 12). However, further experimen-
tation 1s needed to validate the relationship between nolse ratio,
workload, and pilot opinion.
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CONCLUDING REMARKS

We have seen how modern control and estimation theory can
provide a unified approach to the analysis of manual control
systems. Within a single optimization hypothesis we can derive
mathematical representations for the human operator's control
behavior, for his instrument monitoring behavior and even for
workload and task interference.

In the preceding chapters we derived an optimal control model
of human behavior that is capable of predicting human response
characteristics in simple as well as 1n complex tracking tasks.
The techniques for using the model were discussed, model inputs
and outputs were delineated and model sensitivities to input
parameters were studled. We then toock a single set of input
parameters obtained from simple experiments, and used the model
to accurately predict pilot performance across a wide range of
simulated VTOL hovering tasks. This analysis demonstrated con-
vincingly the potential and yet the simplicity of our approach
to manual control.

We do not claim that our work on the model is finished. There
is much that remains to be accomplished in the manual control
field and numerous extensions and improvements of the model are
possible (several of which we discussed). However, we do believe
that the results presented here provide irrefutable evidence of

the value of an optimization approach to manned-vehicle systems
analysis.
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APPENDIX A
"USE OF THEOREM 1 TO FIND THE KALMAN ESTIMATOR

In order to use the algorithm of Theorem 1 to solve the optimal
estimation problem, when the nolses are output dependent, it is
necessary to define the noise covariance matrix in the form

Y, = R+ I(P) (a1)

and to develop a means for solving repeatedly the linear matrix

equation

= [}

O =P A + AP + W+ Lk[B + E(Bk)]&ﬁ

A, = A - L, C

Tk Tk (A2)
- -1 _

L, = P _1C'[R + I(R, ;)] k=1,2,...

with LO given., In this appendix we use matrix algebra to arrive
at the desired results.

The identification of yy in the form (ap1) 1is relatively
straightforward by combining Egs. (91) and (93) to obtain

m T ©
' Y Yo T
R= ) ores|C | [e2Wet o + [e2%elTuel TeB ag)cr| e (a3)
i=1 0 0 11

part of Yy independent of P

157



where g; is an m-dimensional unit vector in the i-th direction.
The part of yy related to P 1is given by

m
n(p) = E pse i[C eATP eA' ¢ ] igi
i

i=1
m Ll _

+ E 0,8l J el9eAT(p prsn Pret Tl %40 o el (ak)
i=1 o . 11

It is possible to show, by matrix and vector manipulations,that
I(P) may be written as

m m. _n
at a 1
n(e) = E :1—1913 cy8y t E : E : gjf_ E §—j—-i
i=1 i=1 =1
where gi'is the i-th row of §_= C eAT, §J 1s an n-dimensional
unit vector and
' .
Hi = 2ared'T A9 cs Acdc‘ref‘—T
- - £184°
]

Equation (A5) clearly shows the relationship between n(p), or
equivalently Yy, and P. Note that since £jP H Ej is a scalar,
I(+) is symmetric, i.e., I(+) = I'(+).

Having obtained an expression for II we can turn to the solutlon
of Eq. (A2) for gk. We first write, dropping the k subscript, for
notational ease

158



LIRHI(P)IL' = L R L' + L I(P)L! (A7)

Substituting Eq. (A5) for II(*), the second term becomes

m
L I(P)L' = Z 0y (2,81)P(280)" (48)
i=1

m 1
+ zzpi(gigj)g(&igj) (48)
i=1 j=1

|
where 2, 1is the i-th column of L and gj is the j-th row of gi
Thus, Eg. (A7) may be written in the form

LOR$I(P)IL' = L R L' Z ;1- o) + ZZE PE], (A9)

- ot = = i
where Gy =\py 2;87 » Eiy =Py (298]), Fyy =\py Lh}

Consequently, the solution of Eq. (A2) is tantamount to solving
a linear equation of the form

1 ' 1 =
PAHARFUHLEL + ) 0P+ Ey P Fj,=0

(A10)
This equation may be solved with the help of Kroneker product
notation (see Ref.[32]). We define the n2-vector, gv, as

gv = (pll’pzl""’pnl’p12""’pn2”"’pnn) (A11)
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and make a similar definition for (W+L R &')V. It is then possible
to show that
_1(

Po=-a 'MW+ LRL)

v

where
m

m Tl
I@r e ®1 ) @+ D ®F,
=1 j=1

i=1
(A12)

N

Consequently, for a given iterate k, the solution of Eg. (A2)
for gk is equivalent to the solution of a set of n2 simultaneous
linear equations. The use of Theorem 1 to solve for the optimal
estimator, given the noise ratios Py, is thus easlly accomplished
using the same lterative technique as is used to solve the
"standard" estimation problem (i.e., given the noise covariances

V)
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APPENDIX B
AN OPTIMAL CONTROL MODEL FOR PREDICTING HUMAN RESPONSE
A MANUAL FOR THE USE OF COMPUTER PROGRAMS

This Appendix 1is a guide for using the computer programs
that have been developed to solve the optimization problems
associated with our human operator model. This appendix is
included as a separate section, independent of the main body
of the report, in order to facilitate its use. As a matter of
convenience we have restated the basic assumptions of the model,
which results in some repetition of the results already presented.
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INTRODUCTION

This manual 1s a guide for using on-line interactive computer
programs that predict human operator performance and response char-
acteristics in tracking tasks. The human operator model is based

on optimal control and estimation theory coupled with a mathematical

description of the human's limitations. The basic underlying as-
sumption is that the well-motivated, well-trained human operator
behaves in a near optimal manner subject to his inherent limita-
tions and constraints, and his control task. The detalls of the
theoretical development appear in Kleinman, Baron and Levison [1]

where the model was described in detall and was applied to study
several simple manual tracking tasks.

Herein we present a thoroughly detailed and documented guide
for using computer programs associated with the optimal control
model. Input quantities are clearly described as are the various
options for model outputs. The computer programs are written in
Fortran IV for use on a Digital Equipment PDP-10 time-shared com-
puter with disk storage.+

Finally, an example is presented that demonstrates the on-line
use of the model with sample print-outs.

The modifications to a DEC-TAPE system are trivial.
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MODEL SUMMARY

Controlled Element Dynamics

The human operator's basic task is to control in some pre-
scribed way, a dynamical system. The vehlcle dynamics are assumed
to be represented adequately by the linearized state equations

x(t) = A x(£) + b u(t) + w(t) (1)

where x(t) is an n-vector that describes the state of the vehicle
and u(t) is the human's scalar control. w(t) is a vector of (zero-
mean) independent "white" driving noise processes with autocovari-
ance

E{wi(t)wi(c)} = Wia(t—o) (2)

If the external forcing functions have rational power density
spectra of first order or higher, the resulting "shaping filter”
dynamics are incorporated into Eq. (1). We assume that the states
are ordered such that the first n, states XysX5yee. X, Aare asso-
ciated with the noise dynamics (nc=l for first order °noise, etc.)

The pertinent system outputs gﬁt) = (yl,yz,...,ym) are linear
combinations of system states and control, namely

y(t) = ¢ x(t) + 4 u(#) (3)
and are presented to the human by way of some display.

Thus the external systemy; S to be controlled by the human is
described by the quantities

S:(n,nc,m,A,b,w,C,d) ()
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Human's Limitations

The various psycho-physical limitations inherent in the human
are represented by a lumped equivalent perceptual time delay T and
a.model for remnant consisting of an equivalent observation noise
vector Xy(t)- A separate (white) observation noise vy (t) is asso-
ciated with each displayed output yi(t). The autocova}iance of
Vyi(t) is

E{vy (t)vy

(o)} = Vy +§(t=-0) (5)
1 .

i Vi
Thus, the human perceives

zp(t) = y(t-1) + gy(t—r) ) (6)

a delayed, noisy replica of the displayed system output.

In order to model certain control situations adequately, we
have found it necessary to include a motor noise term vu(t) in ad-
dition to the observation noise vector. This is helpful primarily
when the input disturbance is not applied in parallel with the pi-
lot's control signal. In this situation, motor noise serves to
prevent the model from acquiring perfect knowledge of various sys-
tem inputs or outputs which, in fact, are not known perfectly by
the human. Use of motor noise here is strictly a mathematical con-
venlence and does not imply that we are able to distinguish experi-
mentally the various sources of remnant, which we cannot do at pres-
ent. The motor noise is assumed to be white with autocovariance

E{vu(t)vu(o)} = Vu-G(t-c) (7)
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Control Task

It is assumed that the overall control task is adequately re-
flected in the human's choice of a control input u*(t) that mini-
mizes a welghted sum of averaged state and control variances

n
_ 2 2 2
J(u) = E qicxi+ ro, + g0y (8)
i=1

conditioned on the human's observations lp(')'

The weightings in J(u) satisfy a; > 0, r >0, g > 0 and may
be objectively and/or subjectively determined.

Note that neuro-motor dynamics have not been included among
the human's inherent limitations. However, included in J(u) is a
cost which depends on control rate. This term can represent an
actual cost on u(t) or it can be used to account indirectly for
the physiological limitations on the rate at which a human effects
control action. It can be shown that the inclusion of such a term
results in a first-order lag (often associated with the neuro-
muscular system) being generated in the optimal controller.

Model Structure

With the above assumptions, the human's control characteristics
are determined by the solution of an optimal regulator problem with
time-delay and observation noise. It has been shown (Ref.l) that
the resultant optimal closed-loop system has the general structure
shown in Fig. 1. The human operator model consists of the cascade
combination of a Kalman estimator, a least-mean-squared predictor
and a set of gains acting on %(t), the best estimate of the system
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state z(t).+ The lag factor Ty depends on the cholce of control
rate weighting, g. For given values of ay and r there is a one-
to-one correspondence between g and T the smaller g, the smaller
is TN. Thus, a prespecified value of Ty Wy be obtained by suitably
adjusting g.

Since the optimal feedback controller is linear and time-
invariant, the human can also be modelled in the frequency domain
by a (vector) transfer function

u(s) = h(s)y(s) (9)

Therefore, in a straightforward manner, one can predict human oper-
ator describing functions (and injected remnant) that are equivalent
tc those that are normally measured in an experiment. Furthermore,
the model allows us to predict the power spectrum (input and remnant
related) of any system state, of any output, or of the human's con-
trol. Also available is a prediction of closed-loop performance,
i.e., state, output and control variances.

Summary - Model Inputs and Qutputs

As we have seen, the use of the optimal control model in a
predictive manner requires the specification of various input
parameters relating to the fixed vehicle configuratim, the task
description and the human's limitations. Various human operator
characteristics can then be computed as outputs. For reference
and convenience, Fig. 2 summarizes these model inputs and outputs.

~l~The detailed structure of the optimal feedback system is given in

Ref.l.
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INPUTS

e VEHICLE DESCRIPTION
(a) System Dynamics and Input Shaping
(b) Displayed Variables A

o TASK DESCRIPTION
(a) Cost Functional Weightings

« HUMAN DESCRIPTION
(a) Subjective Weightings
(b) "Neuromotor" Time Constant, ™
(c) Time Delay
(d) Motor Noise
(e) Observation Noise

QUTPUTS
- STATE, OUTPUT, AND CONTROL VARIANCES

« PILOT DESCRIBING FUNCTION AND REMNANT SPECTRA

- STATE, OUTPUT, AND CONTROL POWER SPECTRA
(INPUT CORRELATED AND REMNANT CORRELATED)

FIG.2 MODEL INPUTS AND OUTPUTS
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COMPUTER PROGRAMS

Two main programs have been written for using the optimal con-
trol model. The first program enables the user to specify the fixed
system parameters. The second program solves the optimization prob-
lems assoclated with the model and provides human response prediction.
Both programs are discussed below. '

Fixed Parameter Specification

the configuration of the system to be controlled. A computer program,
INPUT, has been written to allow on-line user specification of these
guantities. The parameters are outputed to a user specified file for
subsequent reading by later programs. It is therefore possible (and
in many cases convenient) to establish numerous such data files, each
of which is associated with a different set of vehicle dynamics.

The program is initilated from the PDP-10 time-sharing monitor by
typing

RUN_DSK:INPUT

The program may be aborted at any time by typing successive fC
(CONTROL-C), which then returns control to the time-sharing monitor.
The INPUT program can then be reinitiated by typing .STARTp

A flow chart for the INPUT program is shown in Fig. 3. Various

features have been included for the user's benefit and for operational
ease, Specifically,
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NITIALIZE?

Y INPUT
READ IN PARAMETERS
PARAMETERS FROM FROM TELETYPE

ISPECIFIED FILE

N
CHANGES? PRINTOUT?
Y
SPECIFY PRINT ON TTY
PARAMETERS
SPECIFY
MAKE CHANGES OUTPUT FILE
AS REQUIRED
WRITE OUT
ON FILE

FIG. 3 FLOW CHART FOR PARAMETER SPECIFICATION PROGRAM
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1. Initialization of parameters from Teletype
This 1s the usual way for first specifying input parameters.
The program requests, in order, the parameters

n = number of states

n, = number of noise shaping filter states
A = (aij) ; 1=1,2,...,n , j=1,2,...,n

b = (bi) ; 1=1,2,...,n

w o= (w) 5 1=1,2,...,n

m = number of outputs

c = (cij) ; i=1,2,...,m , j=1,2,...,n

d = (di) ;3 i=1,2,...,m

Type-in errors can be immediately deleted by typing successive
(RUBOUTS). Each (RUBOUT) deletes one preceding character which is
then echoed for veriflcation on the teletype. All user type~-ins
are actuated by a CARRIAGE RETURN (¢).

After all of the components of a matrix or vector (say A) are
typed in, an opportunity is given the user to make any final cor-
rections.

2. Initlalization of parameters from an existing file

This enables the user to change (or examine) any number of
specific parameters on an existing file without having to retype all
quantities. If this option is elected, the user must supply the
name of the data file that contains A,b, etc. The parameters are
read and changes are requested,
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3. Parameter printout

When all of the parameters have been specified by the user (or
read from a data file and subsequent changes made),; a printed tele-
type listing may be obtained if so desired.

4, Prequencies

A preselected set of 15 frequencies from .05 to 40,0 rad/sec
is generated for later use by the model. Subsequent frequency
domain predictions will be made at these 15 values only. The pre-
set frequencies are:

w= .05,.18,.52,1.0,1.5,2.0,2.9,4.0,5.7,8.,11.,16.,22.,32.,40

5. QOutput to data file

The user specifies the name of a data file on which all of the
parameters are to be stored. This may be an existing file or a new
fiie. File names are arbitrary, except that they must be five char-
acters or less. After outputing, control is automatically transferred
to the time-shared monitor.

Model Use

A computer program HRA3 (Human Response Analyzer - 3) as well
as numerous subroutines has been writtenf to solve the optimization
problems associated with 0ur>modélling approach, The main program
consists of seven different but interactive parts. These parts in-
volve parameter specifications, computations and type-out options.

The specific function of each part is listed in Table 1.
HRA3 is actuated from the monitor system by typing

. RUN DSK:HRA3p

TIn Fortran IV for use on the PDP-10.
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The program begins by requesting the name of the data file that con-

tains the vehicle parameters (Part 1).

Computer control proceeds automatically from one part to the

next in a sequential manner.

However, it is possible for the user

to interrupt and then (re)start the program at any part in order to

respecify parameters and/or recompute model outputs.

TABLE 1

Part Functions and I-0 of HRA3

reflected remnant
and spectra
specification.

‘representation.

Part No. User Type-In Computer Operation Program Type-Outs
1 Name of Data file. | Read fixed system param-
eters from file,
2 Cost functional
welights Ay T
3 Control rate Obtain optimal feedback value of Ty
weighting, g gains, Ty
4 Humans time delay,t! Compute eAT.
5 Motor noise Obtain portion of
covariance, Vu optimal cost.
6 Observation noise Solve variance equation; Normalilzed
covariances, V_. compute optimal costs and noise ratios
I noise ratios. (dR). System
variances.
7 Transfer function, |Obtain frequency domain Transfer func-

tion-Mag. and
Phase. Reflected
normalized obs.
noise., Spectra-
correlated and
uncorrelated in
dB.
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The procedure for controlling program flow is quite simple. The
user first interrupts the program by typing successive 4C (which
returns control to the time-sharing monitor), followed by .STARTe®.
The computer responds by typing

TO PART:

and the user then types the desired part number. Before control
is transferred to the specified part, a validity test 1s made - it
is illegal to begin Part 1 if all preceding parts have not been
completed.

A flow chart for HRA3 is presented in Fig. 4. Here we give a
concomitant discussion of the I-0 operation of each program part.

1. Vehicle parameters --- User specifies data file (created at
some earlier time by INPUT) from which vehicle parameters are
read. Data is read.

2. State and control weightings --- User specifies > i=1l,...,n
and r.
3. Control rate weighting --- User specifles g. The optimal feed-

back gains are computed and t,, is printed. The user then veri-

N
fies 1f this value of N is acceptable. If unacceptable, part

3 is repeated automatically.
4. Human's time delay --- User specifies t.

5. Motor noise --- User specifies the motor noise covariance Vu‘
This quantity may be set to zero.
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6. Observation noise --- User specifies the observation noise
covariances Vyi’ i=1,2,...,m. These numbers must be greater
than zero. The optimal feedback structure as well as system
performance is computed. The normalized motor noise and ob-
servation noises are printed.+ An option is then given for
printing all system variances (i.e., closed-loop performance).
The user responds by typing Y or N, followed by & .

7. Frequency domain results ~-~ Requests are made for outputing
frequency domain data as predicted by the model. The user can
output internal or equivalent transfer functions between u and
any displayed quantity Vy- The internal transfer (I) is the
associated component of h(s) in Eg. ( 9 ). The equivalent
transfer (E) is the ratio of the transforms yi(s) and u(s).
The equivalent transfer is what one normally measures in an
experiment.

Available is a prediction of remnant. The program combines all
sources of remnant into a single equivalent noise source injected

onto any specified output vy and then normalized by 051.

Finally, the user can obtailn the spectrum (both correlated and
uncorrelated portions) of any single state (X), output (Y) or
of the control (U). The printed spectra are one sided - i.e.,
for positive frequencies only.

In all cases, predictions are made at a preselected set of 15
frequencies ranging from .05 to 40. rad/sec. The specific fre-

quencies are read from the original data file that contains the
parameters A,b,C, etc.

As we have mentioned earlier, the user may restart the program at
any specified part.

+ .
These noise ratios are often more fundamental in human response

analysls than are the noise magnitudes themselves, (e.g., see Ref.

(2D.
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AN EXAMPLE

System Inputs and Outputs

In this section we 1llustrate, by means of a simple example,
the step by step procedure for using the described programs. We
examine a compensatory tracking task of 1/s dynamics in which
the human is given an explicit display of system error (e). We
assume that the human also percelves directly the rate of change
of error (é). The system input disturbance is taken to be a first-
order nolse having a break frequency of 2 rad/sec and a variance
of 1.0. Fig. 5 contains a block diagram of the system configura-
tion.

The system state equations are first obtained in the required
form. If xl(t) denotes the noise disturbance (which is added to
control input) and x2(t) denotes the system error, e, then

ky(8) = %) (£) + u(t)

(i.e. n=2 and nc=l) where wl(t) is white noise with covariance

L 4,0 (so as to yleld a required value of E{xl2} = 1.0).

Thus, in matrix notation
x(t) = A x(t) + b u(t) + w(t)

where
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The system outputs (i.e. "displayed" quantities) ¥y and y, are
respectively error (x2) and error rate (XQ). Thus m=2 and
y = C x + du where

(@]
[

The human's objective control task is to minimize mean-squared
error. Thus, the cost functional J(u) is simply assumed to be

J(u)

[}
Q
o+

[oj¢}
Q

0

i.e. q) = o, q, = l, r = 0. The control rate weighting g 1is, for
the moment, arbitrary.

For the human's parameters we shall take T = .20, and we
shall adjust the control rate weighting g to give a value of
T, = 1. Finally, we wish to choose values for the motor noise
convariance Vu and the observation noise covariances Vyl, Vy2
such that the resultant normalized notor noise 1s -25db~and ~the
resultant normalized observation noises are both -20 dB.+
Clearly this will require on-line adjustment of the values Vu’ v

We wish to predict a) the closed-loop performance, b) the
closed-loop describing function relating control to error, c) rem-
nant spectrum viewed as a single noise source injected onto sys-

tem error, d) the human's control spectrum.

yi.

T These values are typlcal of those measured in single-axis track-

ing tasks.
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Program Use
a. Data Specification

As discussed earlier, the first step in our analysis pro-
cedure 1s the creation of a data file that contains the fixed
system parameters n, n,, A, b, etec. The computer printout show-
ing the initialization procedure is given in Fig. 6 . The
underlined quantities are the user type-ins. Various type-in
mistakes have been made intenticnally in order to demonstrate
the versatility of the program in making parameter corrections
and changes. The various corrective features are shown with
numbered tags. A corresponding description of each feature is

given below.

(1) The letter "N" was inadvertantly struck while typing
CIPE It was immedlately deleted by typing RUBOUT.
The computer responded by printing /N.

~~
%
~

b2 was erroneously typed as 2.0. The error was
immediately realized and corrected by typlng 3 suc-
cessive RUBOUT's (deleting the 3 characters 2.0
which are delimited by the computer) and then typing

the correct value of 1.0.

(3) wy and w, were mistakenly interchanged. This error
was not noticed by the user. Later corrections will
have to be made here.

(D) ¢, was erroneously typed as 2.0. The error was fixed
using the program's internal correction routine.

(5) dy and d,
versed using the correction routine.

were mistakenly interchanged. They were re-

(6) A parameter listing was obtained. The user realized

the interchange of w, and Wo

1
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L]

«RUN DSK:INPUT;

FIXED PARAMETERS FOR DX/DT=AX+BU+W, Y=CX+DU

INITIALIZE FROM FILE? N3
NO. OF STATESﬂg)

NO. OF NOISE STATES=]y

AC 1, 1)=
AC 1y 2)=8N\N\.3 )
AC 2, 1)=1.02
AC 2, 2)=0.0)
ANY CORRECTIONS? N )
% %k sk k%
BC 1)=0.8; /‘”/2\
B¢ 2)=2.8\3.5\1.0 )
ANY CORRECTIONS? N3
o 3 ok ok ok

THE NOISE COVARIANCES:
WC 1)=0:93 — C
We 2)=4.03. ’
ANY CORRECTIONS? N )

sk %k koK

NO. OF OUTPUTS=2 )

CC 1, 13=0.0
cC 1, 2) 1.0 @a
cC 2, H__QP
ce 2, 2)'@ 2
ANY CORRECTIONS? Y ) ()
TYPE INDICES
1=2)
J=1 5
cC 2, 1)=1.9 )
ANY MORE?N
% 2k %k ok ok

_

l
\J

T 7 DC 1)=1.0)
D( 2)-@ 0.0,
ANY CORRECTIONS? Y)

TYPE INDICES

1=1) /
DC 1)=0.8;

AVY MOREZY
1=2)

DC 2)=1.8)
ANY MOREZN

Mook ek s

LR N

TYPEOUT PARAMETERS ON TELETYPE? i)
/

I}

A MATRIX: /
~2.000E+90 0.800E~B1
1.300E+00 0.098E-081

B MATRIX:
DeBONE~A1
1.280E+00

W MATRIX:
B.390E-D1
A.00DE+DD

C MATRIX:
1.0098E+20

1.000E+00
B.000E-01

FIG.6 SAMPLE PRINT-OUT OF
INPUT PROGRAM

D MATRIX:
A.003GE-01
1.000E+80

OUTPUT ON FILE: ABCY —
FINISHED.

EXIT
+C

181



*RUN DSK:INPUT p)

FIXED PARAMETERS FOR DX/DT=AX+BU+W, Y=CX+DU
INJTIALIZE FROM FILE? YH
FILE NAME: ABC;

PARAMETERS READ. ANY CHANGES? 12
WHICH PARAMETER? _'41)
TYPE INDICES
I=1,
We 1)= 2.0088 CHANGE TO: ﬂ_o__q)
ANY MORE?Y ;
1=2 -
We 2)= 4.3000 CHANGE TO: 0. 2
ANY MORE?ZN

o 3fe ok ok sk

OTHER .PARAM. CHANGES? X)
WHICH PARAMETER? _&)
TYPE INDICES
Ir'-.l;
F1 )
AC 1, 1)= -2.0002 CHANGE TO: ‘2-@)
ANY MGRE?E)
o ke o ok ok

OTHER PARAM. CHANGES? N

TYPEOUT PARAMETERS ON TELETYPE? N,
OUTPUT ON FILE: ABC,

FINISHED.

EXIT
*C

FIG. 7 AN EXAMPLE OF CHANGING PARAMETERS ON AN EXISTING FILE
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(7) The parameters are outputed to a file named ABC.

In order to change parameters on the file ABC the same pro-
cedure as above 1s followed except that the parameters are now
initialized from the pertinent file. The process by which w1
and w, are changed 1s shown in the type-out of Fig. 7. Also
shown is an examination of the quantity all‘

b. Model Predictions

Having typed in the fixed parameters and stored them
on a disk file, the user is now prepared to use the Human Res-
ponse Analyser. Below we glve the results of the step-by-step
procedure in using HRA3.

1. Initializing and reading input parameters from file
~RUN DSK:HRAG;

READ FIXED PARAMETERS FROM FILE:ABC)
FINISHED.

2. Specify QT

STATE WEIGHTINGS,Q:
8¢ 1)=g.0
a¢ 2)=1.02
ANY CORRECTIONS? ﬂ)
ek ik o

CONTROL WEIGHTING:Rze,B)
3. Choose g, compute Tn

CONTROL RATE WEIGHTING:G=-991)

™N= #.126 IS THIS OK? ﬁ)

Since the computed value of Tn # .1, new values of g
are requested until Tn is suitably close to the desired
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value:
CONTROL. RATE WEIGHTING,G=5®@ﬂ4}

™= 0.100 IS THIS OK? Y.

Specify T

HUMAN™S TeDe=e2

Choose V
u

MOTOR NOISE,VU:
VLI 1)'-'-’0@1 }

Choose Vy, compute noise ratios

OBS. NOISEsVY:

\!Y( .1‘)=~@l)

YYe 2)=.012

ANY CORRECAIONS? N
sk ko sk

3 X 3 M: RANK 2 =(ThLis typeout is part of an

NOISE RATIOS: initialization routine only)
W 1)=-27.8DB
UY( 1)=-13.4DB
VY( 2)=-25.7DB

VARTANCES? N

TO PART:S 5

Since the noise ratios are not as desired, the

user decldes not to type-out the system variances.
Control can then be transferred to part 5 (respeci-
fy Vu) or part 6 (respecify Vy) in order for the
user to readjust the noise values to give the proper
ratios:
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MOTOR NOISE,VU:
V¢ l)=05152

_0BSa. NOISE,VY:

VYS 1)=.002 )

VYS 23=.032

ANY CORRECTIONS? N5
RkkEk

3 X 3 M: RANK 2

NOISE RAT105:

WUC 1)=-26+3DB
VY« 1)=-27.4DB
W 2)=-21.5DB

VARIANCES? N 5

T0 PART:S ,

MOTOR NOISE,VUs
VUC 132402

OBS« NQISE,VY:

VYC 13=.8925 3

UYC 2022045 5

ANY CORRECTIONS?_E;
SekAcA kK

3 X 3 M: RANK 2

NQISE RATIOS:

Vi 13=-25.2DB
YW 1)==20.2DB
UY¢ 25z=-20.1DB

Since the noise ratios are sufficiently close to
the desired ratios, the user can stop iterating on
Vu and V_ and obtailn the resultant closed-loop sys-
tem variances (if so desired)
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VARIANCES? Y 5
_XC_1) : 1.000E+20
XC 2) : Re284E-02
UC 1) 2 1+636E+00.
DU/DT : 6eT4TE+1
YC 1) : Be28AE-D2
YC 2) : 1+4S51E+90

7. Frequency domaln Results

The desired frequency domain representation is next
obtained

FREQUENCY DOMAIN REPRESENTATION? ZJ

XFER FCN: INTERNAL OR EQUIVALENT? E
BETWEEN CONTROL AND OUTPUT {l;

NORMs REMNANT: REFLECTED ON OUTPUT # 1,

SPECTRAL DENSITY: X»Y>U? U 3
COMPONENT # 1

FREQ MAG. PHASE REMN CORR UNCQORR
G.45 138 =Q9 =145 =50 -51.3
Be18 138 -3¢ 4 =14+95. =58 -4 2
Be52 136 -9+ 5 =14+6 =5e1 -31.0
1892 133 =173 ~14¢9 ~5¢4 —23.4
152 129 -84} ~15e4 ~fel ~21.9

2.99 12.5 ~2948 =159 ~6eB ~19.4
290 1241 ~38¢4 ~1649 =78 ~16.4
4.20 11.8 =479 -18.2 ~9¢2 “~l4.2
e 70 11.2 <628 =2@e8 =11e7 ~12.8
_Be00 12.17 ~Bded =222 ~164+0 ~13.7
11.00 14¢8 ~=116e7 =258 <2149 ~17.0
1608 1Be® =192e6 =29¢2 =3@.2 -23.1
2200 18¢8  =310¢7 =312 =379 =27.2
32,20 11:8. -10s6 =311 =A7.2. =—30.9
4B 00 188  =16Te1 ~38e2 =529 ~32.9

70 PART: i)

HUMAN®"S T'D’=f1$)
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After completing the type-out the program control is
transferred to the part director. The user can then start
the program at any part. For example, to change T, restart
at part 4.

The user can stop the computer type-out at any time by
stopping successive 4C (which returns control to the monitor
and then typing .START) which allows user part specification,

e.g.

TO PART:Z

XFER FCN: INTERNAL OR EQUIVALENT? E
BETWEEN CONTROL AND OUTPUT #1,

NORM. REMNANT: REFLECTED ON OUTPUT # l;

SPECTRAL DENSITY: X>Y»U? Y 5
COMPONENT # 1,

FREQ MAG PHASE REMN CORR UNCORR
BeAS 13.8 -39 ~144¢5 =188 =253
P.18 13.8 -3¢4 ~1445 -18+8 253
752 136 =9+5tC

«START ;

T0 PART:3 5

CONTROL RATE WEIGHTING,G=
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