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ABSTRACT ;

The optimal control model (OCM) of the human operator is used to develop
closed-loop models for analyzing the effects of (digital) simulator
characteristics on predicted performance and/or workload. Two approaches are
considered: the first utilizes a continuous approximation to the discrete
simulation in conjunction with the standard optimal control model; the second
involves a more exact discrete description of the simulator in a closed-loop
multi-rate simulation in which the optimal control model "simulates® thz pilot. }
Both models predict that simulator charzeteristios can have significant effects E
on performance and workload,

1. INTRODUCTION ; ‘

The developaent of engineering requirements for man-in-the-loop digital
sinulation is a complex task involving numerous trade-offs between simulation :
fidelity and costs, accuracy and speed, etc. The principal issues confronting : f
the developer of a simulation involve the design of the cue (motion and visual) :
environment so as to meet simulation objectives and the design of the digital
simulation model to fulfill the real-time requirements with adequate accuracy.
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The design of the simulation wmodel has become increasingly important and
difficult as digital computers play a more central role in the simulations, For
real-time digital simulation with a pilot in the loop the design problem
involves specification of conversion equipment (A-D and D-A) as well ag of the
discrete model of the system dynamics. The design of an adequate discrete
simulation is also related closely to the cue generation problem inasmuch as the
errors and, in particular, the delays introduced by the simulation will be
present in the information cues utilized by the pilot. The significance of this
problem has been amply demonstrated,!:2 Of course, human pilots can compensate
for model shortcomings as well as for those of cue generation, with possible
effects on the subjective evaluation of the simulation,

2

& The objective of the work reported here was to develop a oclosed loop

¥ analytic model, incorporating & model for the human pilot (namely, the optiamal

: control model), that would allow certain simulation design tradeoffs to be

¥ evaluated quantitatively and te apply this model to analyze a realistic flight

g control problem. The effort concentrated on the dynamic, closed loop aspects of

é *The work described herein was performed under Contract No. NSA1-14449 for NASA 3

3 - Langley Research Center. Mr, Russell Parrish was the Technical Monitor and g

g, contributed many helpful suggestions. K %
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the simulation. Problems associated with perceptual issues in cue generation

Wwere not considered, However, the limitations imposed by the dynamics of visual

_cue generation equipment are considered and the model can be readily extended to

incorporate the dynamics associated wibh motion simulation.

The optimal control model.of the human operator3 4 is central to, the closed
loop analysis technigues that have been employed. This model has been validated
and applied extensively and has a structure that is well-suited to analysis of
the simulation problems of interest. The model can be used to generate

‘predictions of attentional workload as well as of closed-loop performance. This
“.-i8:significant because, as noted earlier, pilots may compensate for simulation
.-. shortcomings but with a workload penalty, such simulation-induced operator

o ,tradeoffs need to be explored. ,

Two approaches to closed=-1o00p modelling are considered. The first empioys

©. a-continuous approximation to the open-loop dynamics of the digital simulation

in conjunction with the standard OCM. The second mcdel attempts to represent
the discrete simulation dynamics more exactly, It utilizes a simulation version
of the OCM. This latter model is referred to as the hybrid model.

In the remainder of this paper, the closed loop models are described and

some results of applying the models are presented and discussed. More extensive
discussion and additional results may be found in Reference 5.

2. CONTINUOUS CLOSED LOOP MODEL

ANALOG o]} GlgAL
T0 DIGITAL T DISPLAY
=1 DIGITAL * COMPUTER ANALOG ™1 DYNAMICS
CONVERTER (CPU) CONVERTER
(ADC) (DAC)

OPTIMAL CONTROL
MODEL
OF PILOT

Figure 1, Simplified Model for Closed Loop Analysis of Digital Simulation

Figure 1 is a block diagram of a simplified closed-loop model for analyzing
problems in digital, piloted simulation. The piiot model in Figure 1 is the
0CM.3»Y The elements corresponding to the simulator are an analog-to-digital
converter (ADC), a digital computer (CPU), a digital-to-analog converter (DAC)
and a visual display system. Briefly, the ADC is a sampler preceded by a
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: spbseqnént' discussions. are reviewed briefly here. Figure 2 illustrates the
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"l‘ow-pa'ss filter included £o winimize aliasing effects, the CPU implements
i difference equations so as to simulate the vehicle's response to the pilot's

(sampled) input, the DAC is a data-hold (either zero-order or first-order), and
the visual display system is a servo-driven projector that continuously displays

: " target position (relative to the aircraft) to the pilot. These elements will be
- discussed in more detail below.

T .,

"+ 2.1 “optimal Control Model for Pilot

e A"

© Some of the f‘eatures' of the OCM that are particularly relevant to
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Figure 2: Structure of Optimal Control Model

structure of the OCM.
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‘. The OCM ésrobiginally conceived and developed presupposes that the system
< -dynamics, corresponding to the element to be controlled, may be expressed in
© state variable format ‘ :

e s g T

x(t) = Acx('t) + B u(t) + B, w(t)
(1)
y(t) = Cox(t) + Dyult)

where x is the n-dimensional state-vector, ¥y is an m-dimensiopal vector of )
}displayed outputs, u is the r-dimensional control input vector and w is a vector , . L
"of disturbance and/or command inputs. The system matrices (As, Bp, Co» Do Eo) '
“apeé’ generally assumed to be time-invariant, although this. restriction can be
relaxed. The above system dynamics include the linearized dynamics of the
aircraft (or other controlled element) and any dynamics associated with
measurement, control and display systems. The subscript ¢ on the system
matrices is included to emphasize that the dynamics are assumed to represent a :
continuous system. . o

. For ﬁurposes of discussion it is convenient to consider the model for the
pilot as being comprised of the following: (i) an "equivalent" perceptual model
that translates displayed variables into noisy, delayed perceived variables
denoted by yp (t); (ii) an information processing model that attempts to
estimate the system state from the perceived data. The information processor
consists of an optimal (Kalman) estimator and predictor and it generates the
minimum-variance estimate ‘K(t) of x(t); (iii) a set of "optimal gains", L°,
chosen to minimize a quadratic cost functional that expresses task requirements;
and (iv) an equivalent "motor" or output model that accounts for "bandwidth"
limitations (frequently associated with neuromotor dynamics) of the human and an
inability to generate noise-free control inputs. 3 |

The time delay or transport lag is intended to model delays associated with
the human. All displayed variables are assumed to be delayed by the same
amount, viz. T seconds. However, delays introduced by the simulation can be
added to the human's delay without any problem, so long as all outputs are
delayed by the same amount, If such is not the case, then all outputs can be
delayed by T , where T is now the sum of the minimal delay introduced by
the simulation and the operator's delay, and additional delays for the outputs
requiring them can be modeled via inclusion of Pade approximations in the output
path.

B

The observation and motor noises model human controller remnant and
involve injection of wide-band noise into the system. This noise is nfiltered"
by the other processes in the pilot model and by the system dynamics., It should
be emphasized that the injected remnant is a legitimate (if unwanted) part of
the pilot's input to the system and, therefore, significant amounts of remnant
power should not be filtered out in the de-aliasing process of a valid
simulation.

e o et e o et

The neuro-motor lag matrix limits the bandwidth of the model response.
Typically, for wide-band control tasks, involving a single control variable, a
bandwidth limitation of about 10-12 rad/sec gives a good match to experimental
results (i.e., a neuro-motor time constant of Ty & .08 - .10). For many

o e e i .
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aireraft control tasks there is no significant gain (i.e., reduction in error)
to be obtained by operating at this bandwidth, and there can be some penalty in
unnecessary control activity. For such tasks larger time constants (lower
bandwidths) have been observed. In these cases, if the neuro~-motor time
constant is arbitrarily set at the human's limit (say Ty = .1) good predictions
of tracking or regulation performance are usually obtained; but the control
activity and pilot bandwidth tend to be overestimated. Inasmuch as it may be
useful to have more accurate estimates of pilot bandwidth for making decisions
concerning approximations to the discrete simulations, TN was chosen in this
study on the basis of a wmodel analysis of the tradeoff between error and
control-rate scores. Essentially, this involves using the model to sweep out a
curve of error-score versus control-rate score to find the value of T, where
marginal improvements in performance require substantial increases in rms
control-rate (the "knee" of the curve). A value of approximately .15 sec (an
operator bandwidth of about 1 Hz) was determined on the basis of this analysis,5

The optimal estimator, predictor and gain matrix represent the set of
"ad justments" op "adaptations" by which the human attempts to optimize
pérformance, The general expressions for these model elements depend on the

The question arises as to the appropriate internal model when the human

Finally, it should be mentioned that the solution to the aforementioned
optimization problem yields predictions of the complete closed-loop performance
statistics of the system. Predictions of pilot describing functions and control
and error spectra are also available., 4]l statistical computations are
performed using covariance Propagation methods, thus avoiding costly Monte Carlo
simulations. This is not the case for the hybrid model described later,
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‘2.2 Open-Loop Simulator Dynamics
! The application ‘of the standard OCM to closed-loop analysis requires a
continuous state representation of the complete controlled element. Since the
. human pilot in closed loop control will operate on essentially continuous
* dutputs to generate continuous control inputs even when digital computers are
used in the aircraft simulation, it is meaningful to consider a cont.inuous
‘transfer function approximation to the open loop simulation dynamics., Such an
approximation is developed here. It consists of a rational transfer function
multiplied by a transportation lag. The rational transfer function approximates
the amplitude distortions introduced by discrete integration of the fiight
dynamics. The delay accounts for all the phase lags introduced by the simulator
éomponents, These phase lags are the major source of degraded performance and
increased workload in closed loop tasks. However, the amplitude distortions can
be significant for open-loop responses,

System Function From Stick Input to Displayed Output

Figure 3 is an elaborated diagram of the simulator portion of Figure 1.

De-Aliasing VISUAL

_ Filter cru HoLb SERVO
u(s) ' upls), u,*(s) | D*(s) 73*(8) yi(s)
—~——y| F,(s) —d H(5) N V(S s
u(c) uy (t) g uy(2) D(z) T Tyiiz) yit)
S e
Fy(s)

Figure 3. Open Loop Simulator Dynamics

Note that the output of the visual servo, y(t), is a continuous signal as is the
input, u(t), to the A-D dealiasing pre-filter.® For analysis purposes we use the
notation implied in Figure 3. Variables or functions with argument s represent
Laplace transforms and those with argument 2z correspond to z-transforms., The
starred quantities correspond to Laplace transforms of impulse sampled signals
or of functions of z and are defined, e.g., by?

A 17 .
u, *(s) = u,(2) = = +3nQ
1 12| st 'rnz_m“l‘s ind) (2)

or

- s as i a0 - - -

#For simplicity, we consider single-input, single-output systems. The rasults
obtained here can be generalized to more complex situations.
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D¥*(s) = D(z2)
2=ST

where T is the sample period and

Al

Q= = sampling frequency

' From Figure 3, we obtain

Y(s) = Fy(s)y;*(s) = F,(s)D*(s)u,*(s)

F,(s)D*(s) % ) F1(s+jnQ)u(s+jnQ)

n=e=00

Equation (5) gives the exact transfer relation between u(s) and y(s),
However, it is not a useful expresgion from the standpoint of closed-loop

modeling because of the infinite summation.

The system function for a linear system (such as the simulation system
under analysis) may be obtained by computing the steady-state response of the
system to an input of the form exp(st). It is shown in Reference 5 that the
system function from u(s) to y(s) (in steady-state) is periodic in time with a
period equal to the sampling period. However, if the output y(t) is considered
instants, which amounts to introducing a "fictitious"
at the output! then the following time-independent transfer function is

only at sampli

obtained.

G(s’t)lsample = G(s) = Fz*(s)D*(s)Fl(s)
times

We shall consider G(s) defined in (6) to be the "exact" transfer function for

the simulation. Note that Fp*(s) = (VHy)%(s).

Equation (6) is intractable for use with the continuous OCM.
will be necessary to approximate (6) for closed-1loop

expression for F,* which results in
e
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sampler

Therefore, it
analysis, A
straightforward approximation is to ignore all but the n=0 term in the

(3)

(4)

(5)

A AT e
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G(s) y Fp(s)p* (S)F) (s) V(s)H; (s)p* (8)F (s)
T = T —

In utilizing ( 7) 1t will pe necessary to approximate D¥(s);
doing this wil) be discussed Subsequently,

For the simulétor' of 1interest here,a

the transfep fu
de-ali

wc3

F,(s) = 3
1 2 2
s + 2wcs -!-2(»c sfwc

w_2
V(s) = DB __

2
s +2cwns+wn

The hold transfer function is either

-sT
= 1-e
H (s) = =

or

2
~Ts
l-e
H(s) = T(1+7Ts) ( Ts )

considered as these cover
simulation, Thererore, if the outors

the basis of the sampling t.heorem,ﬂc >
5Hz. The viaual8 Servo dynamics of interest are characterized by&) = 25 rad/sec
and ¥ = .77

may be approximated reasonably wel} by a pure transport lag in the
region of interest fop Manual control (W< 10 rad/sec). That is,
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the procedure for

netions for the
asing filtep and servo are, respectively,

(8)

(9)

(10)

(1)




T & 2 = 2L
wc ™ TO = T/2
-l (13)
Tv ~ (Cwn) = .057 sec '['1 =
Substitution of (12) into (7) yields
Fl(s)D*(s)Fz(s) = D*(8) exp tp + Ty + Ti)S (14) §

where 1 = 0 or 1 for the zero-order or first-order hold, respectively.

$x

2.3 Effects of Discrete Integration

In the previous section the transfer function D#(s) was left unspecified as i
was the manner in which' it was to be approximated for continuous closed-loop |
analysis with the OCM. In general, D¥(s) will be a "distorted" version of the i
continuous system dynanfics that are to be simulated. Some general features of !
the distortions introduced by various integration schemes are analyzed and
presented in Reference 5 along with results pertinent to the F-8 dynamics that
are to be analyzed later., Here, we present a brief discussion of the general
effects of discrete integration followed by a description of the method that
will be used to approximate D¥(s) in the continuous closed-loop analysis.
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Consider the continuous vehicle~dynamics as described in the state-variable
form of Equation (1), For constant system matrices, the transfer matrix between

system outputs and control inputs is given by

: y(s) = &(s) u(s)
’ (15)
s(s) = cc(’l"c)-1no + no

When equations (1) are "integrated" digitallg, they lead to a discrete
approximation with the following transfer matrix

D*(s) = {cd[zI-Ad]'l By + Dd}.l - (16)
z=e

121




-

where the matrices in (16) depend on the particular integration scheme and
sample period as well as on the corresponding continuous system matrices.
Several points concerning Equation (16) are noteworthy. First, the elements of
the discrete transfer matrix D#(s), cannot, in general, be expressed as the
ratio of two polynomials in s of finite degree. Second, the Bode responses
corresponding to (16) will differ from the continuous responses in both
amplitude and phase; and, further, the responses for the discrete system are

AR L

: periodic in frequency with period equal to 2m/T . Third, the

- poles and zeros of Equation (16) are infinite in number and are given by, for

E example,

P, = 0, + 3wy + 21k); k = 0, t1, £2,...

Moreover, the principal values for the poles and zeras, i.e., those with k = 0,
are not, in general, equal to the corresponding poles and zeros of the
continuous system. Finally, simple integration schemes, such as Euler, will
have the same number of principal poles as the continuous system, whereas
multi-step integratior. schemes, like (Adams-Bashforth), will introduce principal
roots that are spurious.

We now turn to the problem of approximating D¥(s) so that the continuous
representation of the simulator dynamics may be completed. Because of the
restrictions imposed by the OCM, we restrict the possible approximations to the
following form:

= D* ¥ n "TCs

£,

j M

uhere?ﬁ(a) is a ratio of finite polynomials in s with numerator degree less than
or equal to the degree »f the denominator. Note that the same "computation®
delay, T . is associated with each transfer function. This turns out to be a
good approximation for the dynamics considered in Sgotion §, If different
delays were needed, they would be included in D via a rational Pade
approximation.

The simplest approach to selecting's is to use (15) and let

Dij (s) = <]>c‘ (8) “n
1)

From the standpoint of the OCM, this means that the state equations for the
original dynamics are used and discrete integration is modeled by adding a delay
determined from the phase distortion, As has been stated earlier, such an
approximation probably accounts for the major source of difficulty of discrete
integration in closed-loop control. However, to employ it exclusively is to

i leave us somewhat uncertain as to the closed-loop significance of the amplitude

: distortions.
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It was found® that very good approximations to discrete Bode responses
could be obtained for the longitudinal control tasks that are to be analyzed ’
l1ater. These approximations involved perturbation of aircraft stability
derivatives and CAS parameters to yield continuous modes that agreed with the
discrete modes. In the case of A-B integration, it was also necessary U0
introduce a zero in the continuous vehicle transfer in order to reproduce the
amplitude distortion.introduced by this integration scheme.

When Equation (17) is substituted in (14), the basic result is that for the
frequency range likely to be of interest in continuous aircraft control
problems, the simulator transfer function can be modelled as

x-iﬂ = B(s)e"Tss (18)

u(s)

where D(s) is an "approximation" to the Bode response for digital integration of
the vehicle dynamics. The simulator delay, is given by

= - (19)
TSSIF+TH+TV+TC

where T, SHa TV and T respectively, are the delays {ntroduced by the
de-aliasing filter, hold, visual servo and CPU (discrete integration).

The approximation of Equation (18) readily lends itself to efficient
application of the OCM. The systenm matrices corresponding to a state
representation of D and the values for Ty are easily obtained for different
sample periods, etc. For each condition, a single run of the OCM is sufficient
to predict the corresponding perforuance. Adjustment of pilot parameters,
specifically observation noise levels, allows the sensitivity to pilot attention

to be examined.

3. THE HYBRID MODEL

There are shortcomings in the continuous model., For example, the effects
of aliasing are not considered. Thus, the degrading effects of the de-aliasing
filter are included in the continuous model but not its benefits. This means
that decreasing the bandwidth, W q, of that filter can only lead to negative
results, a situation that is not obviously true, in general, Similarly, because
only the delays {nherent in the data nolds are considered, zero-order holds will
always show less degradation than first-order holds. But, in some instances,
the first order hold .may provide advantages that outweigh the additional delay
penalty. This type of trade-off cannot be explored with the continuous O
without more sophisticated approximation to the simulator dynamics. Because of
these and other potential shortcomings, it was decided to develop 2 hybrid

model.
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. The approach to developing the hybrid model is to "simulate" the
closed-loop simulation. A discrete simulation version of the 0CM10 was used in
a closed-loop digital Monte Carlo type computation* in which "continuous"
elements of the loop are updated at a rate significantly greater than discrete
elements, In other words, the hybrid model is a multi-rate sampling system,
rather than a true hybrid system. (Informal experimentation indicates that a
sample rate five times that of the discrete elements is adequate to simulate
continuity for the cases considered here.) In addition, to different sample
rates for continuous and discrete elements, the updating of the discrete
equations of the hybrid model is different for the two kinds of elements. 1In
particular, discrete elements are updated by means of the integration scheme and

.time-step specified for the "true" simulation. The equations for continuous
‘elements are updated at the faster rate via transition matrix methods.

The equations describing the hybrid model are quite complex and are
described in detail in Reference 5. Here, we simply note two features of the
model that are interesting and useful in subsequent analyses. First, the hybrid
model was implemented so that the prediction time in the predictor of the OCM
(See Figure 2) could be selected arbitrarily. This contrasts with the standard
OCM in which the prediction time is always equal to the time delay. This
additional freedom allows us to "sweep out" curves of performance versus
prediction time. Theoretically, best performance should be obtained when the
prediction time is equal to the sum of the human's delay and the simulator's
delay, i.e. when the operator compensates optimally for both delays. Since the
human's delay is an assumed parameter, the ocompensation time for best
performance yields an independent measure of the simulator delay.

A second feature of the hybrid model is that the internal model for the OCM
need not be the same as the system model.® This flexibility provides the hybrid
model with a capability for examining transfer-of-training questions, In
addition, since optimal performance should correspond to the operator's model
being equivalent to the system model, the hybrid model can be used to evaluate
different (internal) approximations to the discrete simulation.

A final point concerning the hybrid model is worth noting. Because it is a
Monte Carlo model, it ncrmally will require many computer solutions to obtain
meaningful statistics. In the analyses to be performed here, however, we are
interested in the steady-state response of stationary systems. Rather than
average over many Monte Carlo solutions, we have assumed ergodicity of the
processes and utilized time-averaging of a single response. Even with this
sioplification, it is fairly expensive computationally to obtain valid
statistical results.5

*A truly hybrid (analog/digital) model is possible but would require a hybrid
computer (which was not available).
#Indeed, the system model can even be nonlinear.
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4, AN EXAMPLE

The models for closed-loop analysis of simulator effects have been applied
to an "example"! simulation involving air-to-air target tracking. Results have
J been obtained for both longitudinal and lateral control tasks, for augmented and
unaugmented dynamics and for different target motions. In addition, the effects
of changes in design parameters of each simulation compcnent have been explored.
] The full range of results may be found in Reference 5. Here, a sample of the
- & results is presented to show the extent of the simulation effects and the

F capabilities of the closed-loop models. 3
] 3

Db i

4.1 The Tracking Problem

;
' Figure 4 shows the geometry of the air-to-air tracking in the longitudinal
¥ plane. The gunsight is assumed to be fixed and aligned with the aircraft body

' axis. For longitudinal tracking, we will assume that no information concerning
the target's pitch angle, € nor the relative aspect angle is available. The

pilot's task is assumed to be that of minimizing the mean-squared, line-of-sigut

| |
MBI T e ekt 4
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Figure 4, Target Gecmetry
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tracking erroré€ .

The target is assumed to execute random vertical evasive maneuvers, In
partiocular, target altitude variations are generated by passing white, gaussian
noise through a third order filter as illustrated below,

R T B R s I O TR T
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By selecting the covariance of the white noise and the cutoff frequency of the
Butterworth filter, rms altitude variations and normal accelerations may be
specified. Here, a cutoff frequency of t = .5 rad/sec was used and the noise
covariance was chosen to give an rms altitude variation of 267 ft. and an rms
acceleration of 3.1 g. Of course, the linearity of the problem allows us to
scale the results to correspond to higher or lower accelerations.

The longitudinal short-period dynamics of the F8 without augmentation will
be the baseline dynamics. The relevant equations may be found in Reference 5.
The short period dynamics have a natural frequency of 2,28 rad/sec and a daping
coefficient of .29; this represents poor short period handling qualities.
Because of this, and because we are interested in the effects of simulation
parameters as a function aircraft dynamics, a set of augmented longitudinal
dynamios will also be considered. A pitch command augmentation system (CAS) is
used to modify the base airframe characteristics. The CAS design is a modified
version of the design proposed in Reference 11.

The equations for the augmented dynamics are given in Reference 5. The F8
with the pitch CAS has short period roots with a natural frequency of 2,78
rad/sec and a damping coefficient of +64; this constitutes a significant
improvement in the short period handling qualities.?

5. MODEL RESULTS

5.1 Continuous Model

The continuous model was used to analyze the effects of both simulation
parameters and problem variables. With respect to the simulation, the effects
of sample period and integration scheme are presented for the longitudinal
CAS-OFF dynamics. Problem dependent effects are illustrated by comparing
CAS-OFF and CAS-OX results.

We define a basio simulation configuration, corresponding to Figure 3, in
which the cutoff of the de-aliasing filter is set at half the sample frequency,
the visual servo has the DMS characteristics (§= +T07,8, 2 25 rad/sec), and a
Zero-order hold is used in data reconstruction.
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Figure 5. Effect of Discrete Simulation on Normalized Performance

Figure 5 gives normalized performance for the basic configuration as a
function of sample period and integration scheme. Normalized performance is
defined as the tracking error obtained for the simulation configuration divided

B RN

delays (or in flight).* The normalization is determined by computing the
performance utilizing the original, continuous state equations and assuming the .
only delay is that of the operator (.2 seconds). : 4 j

Figure 5 shows substantial effects are introduced by the simulation,
Particularly at low sample rates. Even for the highest sample rate (T =
+03125), there is a 1620 percent performance degradation. A change of this
magnitude exceeds the norsal intra- and inter-subject variability in manual
tracking tasks and would, therefore, be expected to be significant. For the
lowest sample rates the performance degradation ranges from 35-50 percent.,
numbers that are clearly consequential. It is olear that, from a closed-loop
tracking standpoint, A-B integration is superior to Euler integration.

The results in Figure 5 assume that the only adjus:iments in pilot strategy
resulting from the simulation are an increase in predioction time to compensate
for simulator delays and the adoption of an internal model that accounts for the
asplitude distortions (and pole perturbations) introducec¢ by the CPU. The
results are based on the assumption of a fixed level of attention throughout,
However, the pilot may choose to devote more attention to the task (work harder)
and, thereby, reduce tracking error. a reasonable question to ask, then, {s
"How much more attention to the task would be required to achieve performance
levels comparable to those that could be odbtained in a continuous simulation?®
This question can be addressed using the model for workload associated with the
0CM.9 The result of this analysis is shown in Figure 6.

*As might be the case in an all analog simulation with analog displays providing
undelayed visual information,
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Figure 6. Simulation Workload Penalty

It can be seen from Figure 6 that to achieve the performance equivalent to
that for continuous simulation, the pilot would have to increase his attentional
workload by factors up to three for the conditions considered. There is a
substantial workload penalty and it might be expected that a compromise between
performance degradation and increased workload might evolve, This would be the
case, especially if the pilot had not flown the vehicle or a continuous
simulator in the same task so that there would be no basis for setting a
criterion level of performance.

Before leaving the workload question, a further point is worth noting. 1In
the describing function literature, it has been common practice to associate
workload with the generation of lead. However, there has been no quantitative
connection between the amount of lead and the increase in workload. 1In the
present context, one can think of the increased prediction time necessary to
compensate for simulator delays as imposing a (processing) workload analogous to
that of lead generation, The measure of attentional workload given previously
may then be thought of as an alternative means of quantifying the workload
imposed by the requirement for additional prediction.

It was anticipated that there would be an interaction between the effects
of simulation parameters and problem variables such as vehicle handling
qualities, Thus, the above tracking task was analyzed for the CAS/ON
configuration.

Figure 7 compares normalized longitudinal CAS-ON and CAS-OFF performance
for the basic simulation. It can be seen that the CAS-ON performance is
degraded more by the discrete simulation than the CAS-OFF performance., These
results are explained by the fact that the delays introduced by digital
integration are larger for CAS-ON dynamics than they are for CAS-OFF dynamics.
The effects of longitudinal dynamics when viewed in terms of absolute
performance are interesting and are also shown in Figure 7. The absolute
performance for continuous simulation is better for CAS-ON than CAS-OFF (by
about 3.5 percent) and the sensitivity to incremental computation delay is about
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Figure 7. Effect of Vehicle Dynamics

the same for the two configurations. Thus, for a given simulation
configuration, absolute performance for CAS-ON and CAS-OFF configurations will
be about the same if Euler integration is used and the CAS-QFF configuration can
give better performance if A-B integration is used. 1In other words, the
discrete simulation washes out any improvement due to the CAS!
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examined readily

5.2 Hybrid Model

The hybrid model was used to investigate several issues that could not be

in the continuous model context. Results were limited to the

longitudinal unaugmented dynamics because of cost and time considerations
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for T=.1and T = .0625. The ninternal" models for the OCM in these cases are
the continuous approximations to the discrete transfers that incorporate
amplitude distortion effects; however, no delay is added to the human's delay
of .2 seconds to account for the simulations delays. Thus, we expect the
optimal prediction times to be approximately equal to the delay introduced by
the simulation. This is indeed the case as can be seen in Figure 8, For Euler
integration the minima occur at ~.26 sec and ~.2 secC. for T = .1 and .0625,
respectively; the corresponding simulation delays are .27 and .19 .

For A-B integration the minima are at larger compensation times than for
Euler. This is a result of the method used to account for amplitude distortion.
(Reéall that a 2zero was introduced in the transfer function and this
necessitated an increased transport delay to match the phase lag at
mid-frequencies.) With T = .1, the optimal prediction time is around .3 seconds
and the simulation delay is ~.32 seconds. For T = .0625, performance does not
appear to be very sensitive to prediction time in the neighborhood of the
optimum, The simulation delay is ~.21 seconds and performance for this
prediction time is indistinguishable from optimal performance. Figure 8 also
shows a curve for the case where the operator's internal model does not include
a zero to match the amplitude distortion of A-B integration. It can be seen
that for this case a delay compensation of only ~.17 seconds is required. This
corresponds to the delays introduced by the servo, pre-filter and zero-order
hold. The optimal performance is marginally poorer than for the case with
amplitude distortion jneluded in the internal model. These results suggest that
although including the 2zero provides a better model of the effect of A-B
integration, the increased delay compensation neceded to offset the extra lead
should not be viewed here as a workload penalty.

These results confirm the estimates of simulation delay used in the
continuous model. They also demonstrate implicitly how operators may adapt
their behavior to compensate for simulator inadequacy. The added prediction
required may impose a workload penalty as noted earlier.

Another form of adaptation to the simulation involves the pilots internal
model. Two questions are of interest: 1.) What model will the trained operator
adopt when "flying" the simulator?; and 2.) What is the "transfer" effect of a
wrong model when transitioning from discrete simulator to continuous simulator
(flight)? At least partial answers to these questions for the longitudinal
dynamics and Euler integration are provided by the results shown in Figure 9.

Figure 9 gives performance Vs. delay compensation for T = .1 and two
internal models, One internal model is that derived to match the corresponding
discrete transfer function while the other is the basic continuous model. It
can be seen that better performance 1is obtained when the internal model
corresponds to the approximate discrete model implying that this is a better
model of the discrete simulation than is the original continuous model, Figure
g also shows the effect of using the model corresponding to T = .1 seconds in a
simulation where the actual sample period is ,03125 seconds (i.e., nearly
continuous) as compared to using the model for T = .03125 seconds (i.e., the
correct one). If the operator optimizes delay compensation, performance will be
degraded by about 10%. If, on the other hand, the delay compensation
appropriate to T = .1 is used, a performance penalty of about 19% will be
jncurred. The effect is not substantial here but 1% might be in other tasks.
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Figure 9, Effect of Internal Model

The effect of the cutoff frequency of the de-aliasi
is shown in Figure 10, Euler integration of the vehicle equations is used and
other simulation parameters correspond to the basic configuration. The results
are for a sample frequency of 10 Hz (T =.1) 30 a cutoff frequency ofék z 5 Hz
Satisfies the Nyquist requirement. Results are obtained fbrth =1, 5 and 20
Hz, respectively. The lowest value ofly = 20 Hz is based
that there is not significant signal
set the filter break-point at that frequency and incur the delay penalty, The
results in Figure 10 favor using the higher cutoff rrequency,dh =z 20 Hz, for
this problem, Furthermore, there is a substantial pPenalty for using the low
frequency cutoff, These two results imply that aliasing is not a problem here.
We also note that the performance minima forah = 20 Hz and 5 Hz ocour at about
the correct value of prediction time; the optimum prediction time for o = 1 Hz

ng filter on performance
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The effects of using a first order hold instead of a zero order hold are
shown in Figure 11 for both Euler and A-B integration at T = .1 and for Euler
‘ integration at T = .0625. The corresponding best zero order hold performance
‘ values are also shown for comparison purposes. At a sample period of .1

seconds, slightly lower tracking errors are obtained for Euler integration with

: a first order hold than with a zero order hold; in addition, the minimum

’ performance is obtained with less delay compensation. The situation for A-B

| integration and a .1 second sample period is the reverse of that for Euler.
That is, for A-B integration the first order hold degrades performance.

A possible explanation for these results is as follows. The first order

k hold uses intersample information which provides some lead. For long sample
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Figure 11. Effect of First Order Hold

periods and Euler integration, the effective lead provided is apparently more
beneficial than the lag penalty associated with the higher order hold. The
beneficial effects of a first order hold should decrease as the sample period
deareases. This is supported by the results for T = ,0625 which show no
difference between the two holds. In the case of A-B integration the added
delay of the first order hold dominates. This may be due to A-B integration
having an implicit first order hold at the input, thereby reducing any advantage
in adding such a hold at the output.
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6. SUMMARY AND CONCLUSIONS

In this paper we have examined the effects of simulation parameters and
components on simulator fidelity, particularly with regard to predicting
operator performance and workload. Our focus has been on the dynamical aspects
of simulator primarily as they relate to closed loop control. We have generally
ignored questions that would necessitate inclusion of detailed models for cue
perception leaving these to future study.

An approximate continuous model of the discrete simulation was incorporated
in the standard optimal contrci model for the human operator. The resulting
continuous closed-loop model was used to analyze both overall simulation effects
and the effects of individual elements. The results showed that, as compared to
an ideal continuous simulation, the discrete simulation could result in
significant performance and/or workload penalties. The magnitude of the effects
depended strongly on sample period as expected. From a closed-loop standpoint
it seemed clear that A-B integration was much to be preferred. With respect to
the other simulation components it can be said that any reduction in delay is
desirable., Such reductions inevitably involve increased costs (hardware or
software) which must be balanced against the expected improvements.

In addition to the continuous model, a hybrid model was developed to allow
investigation of situations that could not be treated adequately with the
continuous model. Several interesting results were obtained with this model.
It was shown that for this (fairly typical) aircraft control problem signal
bandwidths were such that the de-aliasing filter cutoff frequency could be set
at a value greater than half the sample frequency. A4lso, there appeared to be a
potential under certain conditions for improved simulator performance with a
first order hold (rather than a zero order hold). The model was also used to
show demonstrable effects for adopting the simulator dynamics as an internal
model. The need to compensate for simulator delays via added prediction was
also shown,

We believe the models developed here can be very useful in developing
engineering requirements for flight simulators. These requirements will be
problem dependent which is one reason why models are needed. As we see it now,
the process for using the models would involve the following steps:

i) Use standard OCM to analyze ideal continuous simulation to develop
baseline performance and to determine expected signal bandwidths.

ii) Analyze distortion introduced by discrete integration schemes and
develop continuous models for discrete dynamics valid over the band of

interest.

iii) Analyze effects of integration, cue dynamics etc. using continuous
model.

iv) Use hybrid model to examine effects of data reconstruction,
de-aliasing cutoff frequency etc. .
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Before this procedure could be used with complete confidence the models
cribed herein need further validation and extension. It is especially

important to collect data in a carefully controlled experiment to verify the
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ividual simulation effects.
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