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ABSTRACT

The optimal control model (OCH) of the human operator is used to develop

closed-loop models for analyzin8 the e/'fects of (digital) simulator
characteristics on predicted performance and/or vorklo._d. Two approaches are
considered: the first utilizes a continuous approximation to the discrete
simulation in conjunction wlth the standard optimal control model; the ._eoond ! _*
involves a more exact discrete description of the simulator in a closed-loop
multi-rate simulation In _hich the optimal control model "simulates" tb_ pilot.

i Both models predict that simulator characteristics can have sLsnifiesnt effects

on perromanee and workload.

The development of engineering requirements for man-In-the-loop digital
simulation is a complex task involvins numerous trade-offs between simulation

ill fidelity and costs, accuracy and speed, eta. The principal issues confronting ;<

i the developer or a simulation involve the desiSn or the cue (motion and visual)
environment so as to meet simulation objectives and the deslsn or the disttal
simulation model to tulrill the real-time requtre:ents with adequate accuracy.

The deelsn or the simulation model has become Increasingly Important and
difficult as dl&ttal computers play a more central role In the simulations. ]Pun
real-time digital simulation with a pilot In the loop the design problem
involves specification of conversion equipment (A-D and D-A) as well a_ of the
discrete model of the system dynomlc8. The design or an adequate discrete :
simulation Is also related closely _o the cue generation problem inasmuch as the
errors and, In particular_ the delays introduced by the simulation will be
present In the tnromation cuss utilized by the pilot. The sl&nlrlcance of thls
problem has been amply demonstrated.I, 2 or course, human pilots can compensate ;
for model shortcomlnss as well as for those of cue _eneratlon, with possible
efreots on the subjective evaluation o_ the simulation.

_ The objective or the work reported here was to develop a closed loop
_ analytic model, lncorporetln_ • model _or the human pilot (namely, the optimal

control model), that _ould allow certain simulation design tradeo_fa to be
_ evaluated quantitatively and to apply this model to analyze a realistic _l_&ht

control problem. The effort concentrated on the dynamic, closed loop aspects of

_ eThe work described herein was Pertomed un(ler Contract No, 1(5,,1-1_1_19 for NASA

- Langley Research Center. Hr. Russell Parrtsh was the Technical Monitor and _contributed many helpful su_estlons. ",
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the simulation. Problems associated wlth perceptual issues In cue generation i

were not considered. However, the limitations imposed by the dynamics of visual

cue generation equipment are considered and the model can be readily extended to

incorporate the dynamics associated wlth motion simulation.

The optlm_.l control model o£ the human operator3,q is centra_ to the closed : °
loop analysis techniques that have been employed. This model has been validated "",_

and applied extensively and has s structure that Is well-suited to analysis of
the simulation problems of Interest. The model can be used to generate ....

predictions of attentional workload as well as of closed-loop performance. This

la_ significant because, as noted earlier, pilots may compensate for simulation

shortcomings but w!th a workload penalty; such slmulatlon-lnduced operator r
tradeoffs need to be explored. -.-

-- Two approaches to closed-loop modelling are considered. The first employs
a continuous approximation to the open-loop dynamics of the digital simulation
in conjunction with the standard OCM. The second model attempts to represent
the discrete simulation dynamics more exactly. It utilizes a simulation version
of the OCM. Thls latter model is referred to as the hybrid model. • i

In the remainder of this paper, the closed loop models are described and

some results of applying the models are presented and discussed. More extensive

discussion and additional results may be found In Reference 5.

, 2. (X)Ik'TDIfOOI_SCLOSED LOOP llODm-

t ,.

! I ,,,,.ooI I '! I ! ', H,o,,i

I OPTIMALCONTROLI.
'1 _o(L i_

' l , OFPILOT J

Figure 1. Simplified Model for Closed Loop Analysis of Digital Simulation

Figure 1 is a block diagram of a simplified closed-loop model for analyzing

problems in digital, piloted simulation. The pilot model in Figure 1 is the
OCM._, _ The elements corresponding to the simulator are an analog-to-digital
converter (ADC), a digital computer (CPU), a digital-to-analog converter (DAC)
and a visual display system. Briefly, the ADC is a sampler preceded by a
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,M_..:'l_ow-paSs filter included to minlmtze altas_ng effects, the CPU implements
-_ difference equations so as to siaulate the vehicle's response to the pilot's

(sampled) input, the DAC is a data-hold (either zero-order Or first-order), and
the visual display system is a servo-drlvenprojector that continuouslydisplays
target position (relaglveto the aircraft) to the pilot. These elements will be
discussed in more detail below.

• 2. ! _'Opttllal Control llodel for Pilot .._,,._.
_-.._." . , : _ -

relevant to
b_0_ Some of the feature,sof the OCM that are particularly
,--: subsequent dlscuss-lons,are reviewed briefly here. Figure 2 illustrates the

-":-
• _

DISTURBANCES3Ill)

°: _ yIt)- _.x It)

Figure 2. Structure of Optimal Control Model

structure of the OCM.



......'_,. The OCMas:originally conceived and developed presupposes that the system
d_hamlcs, corresponding to the element to be controlled, may be expressed in
st_atevariable format

ace(C)+ ScU(t) w(t)
c (I)

y(t): ccx(t)+ nu(t)
I

where x is the n-dimensional state-vector, y is an m-dlmenslopal vector of
displayed outputs, u is the r-dlmensionalcontrol input vector and w is a vector
o'fdisturbanceand/or command inputs. The system matrices (Ac, Bc, Co, Dc, Ec)
a_egenerally asStmed to be time-invariant, although this restriction can be
relaxed. The above system dynamics include the llnearized dynamics of the
aircraft (or other controlled element) and any dynamics associated with
mea'surement,control and d_splay systems. The subscript c on the system --:
matrices is included to emphasize that the dynamics are assumed to represent a
continuous system.

For purposes of discussion it is convenient to consider the model for the
pilot as being comprised of the following: (1) an "equivalent" perceptualmodel
that translates displayed variables into noisy, delayed perceived variables 1

denoted by yp (t); (ll) an infopmatlon processing model that attempts to _
estimate the system state from the perceived data. The information processor
consists of an optimal (Kalman) estimator and predictor and it generates the I
minimum-variance estimate'S(t) of x(t); (iii) a set of "optimal gains", L_,
chosen to minimize a quadratic cost functional that expresses task requirements; I
and (iv) an equivalent "motor" or output model that accounts for "bandwidth" I
limltatlons (frequentlyassociated with neuromotor dynamics) of the human and an
inability to generate nolse-free control inputs.

The time delay or transport lag is intended to model delays associated with
the human. All displayed variables are assumed to be delayed by the same
amount, vlz. • seconds. However, delays introduced by the simulation can be
added to the human's delay without any problem, so long as all outputs are
delayed by the same amount. If such is not the case, then all outputs can be
delayed by T , where T is now the sum of the minimal delay introduced by
the simulationand the operator's delay, and additional delays for the outputs
requiring them can be modeled via inclusionof Pade approximationsin the output
path.

, The observation and motor noises model human controller remnant and
! involve injectionof wlde-band noise into the system. This noise is "filtered"
I by the other processes in the pilot model and by the system dynamics. It should

be emphasized that the injected remnant is a legltlmate (if unwanted) part of
the pilot's input to the system and, therefore, significant amounts of remnant
power should not be filtered out in the de-allaslng process of a valid
simulation.

The neuro-motor lag matrix limits the bandwidth of the model response.
Typically, for wlde-band control tasks, Involving a single control variable, a
bandwidth limitation of about 10-12 rad/sec gives a good match to experimental i
results (i.e., a neuro-motor time constant of TN & .08 - .10). For many
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aircraft control tasks there is no significant gain (i.e., reduction in error)
to be obtained by operating at this bandwidth, and there can be some penalty in
unnecessary control activity. For such tasks larger time constants (lower
bandwidths) have been observed. In these cases, if the neuro-motor time

constant is arbitrarily set at the human's limit (say TN _ .I) good predictions
of tracking or regulation performance are usually obtained; but the control
activity and pilot bandwidth tend to be overestimated. Inasmuch as it may be
useful tO have more accurate estimates of pilot bandwidth for making decisions
concerning approximations to the discrete simulations, TN was chosen in this
study on the basis of a model analysis of the tradeoff between error and
control-rate scores. Essentially, this involves using the model to sweep out a
Curve of error*score versus control-rate score to find the value of Tn where
marginal improvements in performance require substantial increases in rms
control-rate (the "knee" of the curve). A value of approximately .15 sec (an

operator bandwidth of about q Hz) was determined on the basis of this analysis.5

The optimal estimator, predictor and gain matrix represent the set of
"adjustments" or "adaptations" by which the human attempts to optimize '
performance. The general expressions for these model elements depend on the ,
system and task and are determined by solving an appropriate optimization
problem according to well-defined rules. Of speclal interest here is that, in
the basic continuous OCM, the estimator and predictor contain "internal models"
of the system to be controlled and the control gains are computed based on
knowledge of system dynamics. The assumption is that the operator learns these
dynamics during trainlng,m

The question arises as to the appropriate internal model when the human
controls a discrete simulation of a nominally continuous system. It would

i that if the operator is trained on the simulation, then the appropriate
appear

model corresponds to the simulation model._s This will be the assumption '
employed with the continuous model.

Finally, it should be mentioned that the solution to the aforementioned

! optimizationproblem yields predictions of the complete closed-loopperformance
statisticsof the system. Predictionsof pilot describing functionsand control

Y

and error spectra are also available. All statlstical computations are .
performedusing covariance propagationmethods, thus avoiding costly Monte Carlo

: simulations. This is not the case for the hybrid model described later.

i:
*Thls is generally more convenient than assuming that the externalmodel differs
from the true model and also leads to good performance prediction.6
mmlf the simulation model is poor, a control strategy that is inappropriate for
the actual system could be learned with negative results in, say, transfer of
training. This issue can be addressed with the hybrid model described later.
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2.2 Open-Loop $isulator l)_asios

• The application of the standard OCMto closed-loop analysis requires a
continuous state representation of the complete controlled element. Since the
human pilot in closed loop control will operate on essentially continuous
outputs to generate continuous control inputs even when digital computers are
Used in the aircraft simulation, it is meaningful to consider a con1",tnuous
transfer function approximation to the open loop simulation dynamics. Such an
approximation is developed here. It consists of a rational transfer fm_ction _._
multiplied by a transportation lag. The rational transfer function approx£_ates
the amplitude distcrtions introduced by discrete integration of the flight
dynamics. The delay accounts for all the phase lqs introduced by the simulator
components. These phase lags are the major source of degraded performance and
increased workload in closed loop tasks. However, the amplitude distortions can
be Significant for open-loop responses.

System Function From Stick Input to Displayed Output

Figure 3 is an elaborated diagram of the simulator portion of Figure 1.

De-AI lasing VISUAL
Filter CPU HOLD SERVO •

F2ls)

Figure 3. Open Loop Simulator Dynamics

Note that the output of the visual servo, y(t), is a continuous signal as is the
input, u(t), to the A-D dealiasing pre-fllter.W For analysis purposes we use the
notation implied in Figure 3. Variables or functionswith argument s represent
Laplace transforms and those with argument z correspond to z-transforms. The
starred quantities correspond to Laplace transforms of impulse sampled signals
or of functions of z and are defined, e.g., by7

uI *(s) A Ul(Z) sT = (s+jn_) (2)
z=e _-

or

tFor simplicity, we consider single-input, single-output systems. The results
obtained here can be generalized to more complex situations.
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D*(s) = D(z)I sT (3)z=e

where T is the sample period and

= 2'_._= sampling frequency
T • (,)

From Figure 3, we obtain

y(s) = F2(S)Yl*(S) = F2(s)D*(S)Ul*(S)

= F2(s)D.(S ) In=__Fl(s+jn_)u(s+jn_ ) (5)

Equation (5) gives the exact transfer relation between u(s) and y(s).

However, it Is not a useful expression from the standpoint of closed-loop

modellng because of the infinite summation.

The system function for a linear system (such as the simulation system

under analysis) may be obtained by computing the steady-state response of the

system to an input of the form exp(st). It is shown in Reference 5 that the

system function from u(s) to y(s) (in steady-state) is periodic in time with a

period equal to the sampling period. However, if the output y(t) is considered

only at samplin_ instants, which amounts to introducing a "fictitious" sampler
at the output_ then the following time-independent transfer function Is
obtained.

I

G(s;t) Isampl e = G(S) = F2*Cs)D*(S)F l(s) (6)
times

We shall consider G(s) defined In (6) to be the "exact" transfer function for

the simulation. Note that F21(s) = (VHi)W(s).

Equation (6) Is intractable for use with the continuous OCM. Therefore, It

will be necessary to approximate (6) for closed-loop analysis. A
straightforward approximation is to ignore all but the n=0 term In the

expression for Fzm which results In

119 /_
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G(s) _,_ F2(s)D*(s)FI(S) V(s)Hi(s)D_(s)FI(S) (7)
T T

In utilizin8 (7) it will be necessary to approximate Dm(s); the procedure for
doing this will be discussed subsequently.

For the simulator of interest here, 8 the transfer functions for the
de-altastng filter and servo are, respectively,

_c 3

F I (s) = _+ .......2_cs2+2_c2S+_c 3 (8)

_n 2
v(s) = _ - .......

s2+2_nS+_n 2 (9)

The hold transfer function is either

_ 1-e-ST (10)Ho(s) = s "

Or

2

-T$R(S) = T (I+Ts) Ts | (11)

Sample periods, T, of 1132, 1116, 1/10 will be considered as these cover
the likely range of interest for piloted simulation. Therefore, if the cutoff
of the de-allastng filter is chosen on the basis of the samplin8 theorem,&) O >
5Hz. The visual servo dynamics of interest are characterized by_ = 25 rad/seo
and _ = .WT. 8

Wlth these parameter values, each of the transfer /Unctions of (8) - (11)
may be approximated reasonably well by a pure transport lag in the frequency
region of interest for manual control (¢J< 10 tad/see). That Is,

120
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V(s) _ e-TV s (12)

It o(s) $ e-_o s

H1 (s) _ e-Tls
where

2 2T
TF _ -- =

00c It TO - T/2

(13)

Tv _ (_O_n)-I = .057 sec T1 = T

Substitution of (12) into (7) yields

Fl(S)D* (s)F2(s)= D* (s) exp -((TF + TV + Ti)S) (14)

where i = 0 or I for the zero-order or flrst-order hold, respectively.
I
i

I 2 3 Effects of Dlserete Inteseation

In the previous section the transfer fUnctionDin(s)was left unspecifiedas

j was the manner in which it was to be approximated for continuous closed-loopanalysis with the OCM. In 8eneral, Dt(s) will be a "distorted" version of the
continuous system dynamics that are to be simulated. Some 8eneral features of1
the distortions introduced by various Integration schemes are analyzed and

!:
:, presented In Reference 5 along with results pertinent to the F-8 dynamics that

are to be analyzed later. Here, we present a brief discussion of the general
effects of discrete integration followed by a description of the method that

[_ will be used to approximate D|(s) in the continuous closed-loop analysis.

! Consider the continuous vehicle-dynamics as described In the state-variable
form of Equation (1). For"constant system matrices, the transfer matrix between
system outputs and control inputs Is siren by

= u(s)

) (15)
i j (s) = ¢c(sz-io)-lnc + nc

When equations (1) are "tntesrated" dtsltal!y, they lead to a discrete
approximation with the following transfer matrix5

I (16)D*(s) = {Cd[ZI-Ad ]-I Bd + Dd}. z=eS T
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where the matrices in (1 6) depend on the particular integration scheme and
sample period as well as on the corresponding continuous system matrices.
Several points concerning Equation (16) are noteworthy. First, the elements of
the discrete transfer matrix DU(s), cannot, in general, be expressed as the
ratio of two polynomials In s of finite degree. Second, the Bode responses
corresponding to (16) will differ from the continuous responses in both
amplitude and phase; and, further, the responses for the discrete system are

periodic in frequency with period equal to 2_/T . Third, the
poles and zeros of Equation (1 6) are infinite in number and are given by, for
example,

Pi = ei + j(_i + 2_k); k = O, +i, +_2,...

Moreover, the principal values for the poles and zerns, i.e., those with k = O,
are not, in general, equal to the corresponding poles and zeros of the
continuous system. Finally, simple integration schemes, such as guler, will
have the same number of principal poles as the continuous system, whereas
multi-step integration schemes, like (Adams-Bashforth), will introduce principal
roots that are spurious.

We now turn to the problem of approximating De(s) so that the continuous
representation of the simulator dynamics may be completed. Because of the
restrictions imposed by the OCM,we restrict the possible approximations to the
following form:

Yi

- D'is(S)Dij(s)e-Tcs

where'(s) is a ratio of finite polynomials in s with numerator degree less than
or equal to the degree of the denominator. Mote that the same "computation"
delay, I: c Is associated with each transfer function; This turns out to be a
good approximation for the dynamics considered in _ctio 9 4. If different
delays were needed, they would be included in D via a rational Pade
approximation. 5

The simplest approach to selecting D is to use (15) and let

Dii.(s) = %..(s) (17)
xj

From the standpoint of the OCM, this means that the state equations for the
original dynamics are used and discrete integration is modeled by addtng a delay
determined from the phase distortion. As has been stated earlier, such an
approximation probably accounts for the major source of difficulty of discrete
integration in closed-loop control. However, to employ it exclusively Is to
leave us somewhat uncertain as to the closed-loop significance of the amplitude
distortions.

122
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It was found 5 that very good approximations to discrete Bode responses
could be obtained for the longitudinal control tasks that ape _o be analyzed "
later. These approximations involved perturbation of aircraft stability
derivatives and CAS parmeters to yield continuous modes that qreed with the.
discrete modes. In the case of A-B integration, it was also necessary to
introduce a zero in the continuous vehicle transfer in order to reproduce the
amplitude distortion introduced by this integration scheme.

When Equation (17) is substituted in (lq), the basic result is that for the
frequency range likely to be of interest in continuous aircraft control
problems, the simulator transfer function can be modelled as

= D(S) e-TsS (18)u(s)

_, where D(s) In an "approximation" to the Bode response for digital integration of

the vehicle dynamics. The simulator delay, is given by |

(19)
: Ts = "IF+ TH + Tv + Tc

where rF, _H,¢ V and T O respectively, are the delays introduced by the
_. de-altastng filter, hold, visual serve and CPU (discrete integration).

: The approximation of Equation (18) readily lends itself to efficient
application of' t_ 0OH. The system matrices corresponding to a state
representation of D and the values for_ are easily obtained for different

• sample periods, etc. For each condition, a single run of the OCHIs sufficient
to predict the corresponding perforwanoe. Adjustment of pilot parameters,
specifically observation noise levels, allows the sensitivity to pilot attention
to be examined.9

3. 11B !_1]) I_

There are shortcomings In the continuous model. For example, the effects
i of altastng are not considered. Thus, the degrading effects of the de-altastN;

filter are included in the continuous model but not its benefits. This Beans
! that decreasing the bandwidth, _o, of that filter can only lead to negative
: results, a situation that is not obviously true, in general. Similarly, because

only the delays inherent in the data holds are considered, zero-order holds will
_ always show less degradation than first-order holds. But, in soae Instances,
i: the first order hold.may provide advantages that outweigh the additional delay

penalty. This type of trade-off cannot be explored with the continuous OCH
without more sophisticated approximation to the simulator dynamics. Because of

?

_: these and other potential shortcomings, It was decided to develop a hybrid
model.
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The approach to developing the hybrid model is to "simulate" the
closed-loop simulation. A discrete simulation version of the OCH10 was used in
a closed-loop digital Monte Carlo type computation t in which "continuous"
elements of the loop are updated at a rate significantly greater than discrete
elements. In other words, the hybrid model is a multi-rate sampling system,
rather than a true hybrid system. (Informal experimentation indicates that a

sample rate five times that of the discrete elements is adequate tc simulate
continuity for the cases considered here.) In addition, to different sample

rates for Oont!nuous and discrete elements, the updating of the discrete
equations of the hybrid model is different for the two kinds of elements. In
particular, discrete elements are updated by means of the integration scheme and

.time-step spoolfted for the "true" simulation. The equations for continuous
elements are updated at the faster rate via transition matrix methods.

The equations describing the hybrid model are quite complex and are
described in detail in Reference 5. Here, we simply note two features of the
model that are interesting and useful in subsequent analyses. First, the hybrid

model was implemented so that the predict!on time in the predictor of the OCH
(See Figure 2) could be selected arbitrarily. This contrasts with the standard
OCH in which the prediction time is always equal to the time delay. This
additional Freedom allows us to "sweep out" curves of performance versus

prediction time. Theoretically, best performance should be obtained when the
prediction time !s equal to the sum of the human's delay and the simulator's
delay, i.e. when the operator compensates optimally for both delays. Since the
human's delay is an assumed parameter, the compensation time for best
performance yields an independent measure of the simulator delay.

A second feature of the hybrid model is that the Internal model for the OCH
need not be the same as the system model. I Th!s flexibility provides the hybrid

model with a capability for examintnE transfer-of-training questions. In
addition, since optimal performance should correspond to the operator's model
being equivalent to the system model, the hybrid model can be used to evaluate
different (Internal) approximations to the discrete simulation.

A final point concerning the hybrid model is worth noting_ Because it Is a
Honte Carlo model, it normall_ will require many computer solutions to obtain

meaningful statistics. In the analyses to be performed here, however_ we are
Interested in the steady-state response of stationary systems. Rather than

average over many Honte Carlo solutions, we have assumed ergodlolty of the
processes and utilized time-averaging of a single response. Even with this
simplification, it Is fairly expensive computatlonally to obtain valid
8tat!sttcal results.5

i eA truly hybrid (analog/digital) model Is possible but vould require a'hybrid

i computer (which Was not available).
Olndeed, the system model can even be nonlinear.
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The models for closed-loop analysis of simulator effects have been applied
to an "example" simulation involving air-to-air target tracking. Results have
been obtained for both longitudinal and iateral control tasks, for aupented and
unau_ented dynamics and for different target motions. In addition, the effects
of changes in design parameters of each simulation component have been explored.
The full range of results may be found in Reference 5. Here, a sample of the
results is presented to show the extent of the simulation effects and the
capabilities of the closed-loop models. "

q.l The Tracking Problem

Figure q shows the geometry of the air-to-air tracking in the longitudinal

I plane. The gunsight is assumed to be fixed and aligned with the aircraft bodyaxis. For longitudinal tracking, we will assume that no information concerning
the target's pitch angle, _ nor the relative aspect angle is available. The
pilot's task is assumed to be that Of minimizing the mean-squared, ltne-of-sigilt

vT

INERTIALREFERENCE

ZTf= INERTIALLINE'OF'SIGHTANGLE(EI.EVATION)
R = TARGETRANGE

(¥, ELEVATIONTRACKINGERROR,_TE-O

Figure _ Target Geometry ;

; tracking error 41v. ++

The target is assumed to execute random vertical evasive maneuvers. In
+ particular, target altitude variations are generated by passlnE white, gaussian
+ noise through a third order filter as illustrated belou.

i

m
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By selecttn8 the oovarlanoe or the white noise and the cutoff frequency of the
Butterworth filter, ms altitude variations and nomal accelerations may be
specified. Here, a cutoff frequency of t = .5 fad/see was used and the noise
oovartance was chosen to 8ire an ms altitude variation of 267 ft. and an ms
acceleration or 3.1 8. Or course, the lineartty el *.he problem allows us to
scale the results to correspond to higher or lower accelerations.

The lonsttudtnal short-period dynamics of the F8 without ausmentatlon wtll
be the baseline dynamics. The relevant equations may be found In Eeferenoe 5.
The short period dynamics have a netural frequency of 2.28 fad/sea and a dampin 6
coefficient of .29,_' thts represents poor short period handling qualities.
Because of this, and because we are interested in the effects of simulation
parameters as a function aircraft dynamics, a set of augmented lonsltudinsl
dynamics will also be considered. A pitch comand aupentatton system (CAS) ts
used to modify the base airframe characteristics. The CA$ desiKn is a modified
version of the design proposed In Reference l l.

The equations for the ausmented dynamics are given In Reference 5. The F8
with the pitch CA$ has short period roots wlth a natural frequency of 2.78
radlsec and a dmpln8 coefficient of .(_; this constitutes a s$snlfioant
improvement in the short period handling qualities. 2

5. I_Ol)gLIIMMJLT5

5.1 Continuous Model

The continuous model was used to analyze the effects of both simulation
parameters and problem variables. With respect to the simulation, the eFFects
of sample period and lntetLration scheme are presented for the lon61t_linal
CA3-OFF dynuios. Problqm dependent effects are Illustrated by comlmrinl
CAS-OFFand CA3-Oll results.

Ve define a baals simulation oonfliuratlon, oorrespondtn8 to FIEure 3, in
whl()h the cutoff of the de-aliaainl_ flIter Is set at hair the sample frequency,
the visual serve has the DI4Scharacteristics _= . 707,_)n = 25 radtsec), and a
sere-order hold Is used in data reconstruction.
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Figure 5. Effect of Discrete Simulation on Normalized Perrormanoe

! Fisure 5 elves normalized perfomanoe for the basic oonftsuratton aa a
funotton of sample period and integration soheu. Normalized performanoe Is
defined as the traekln8 error obtained ro_ the simulation oonflsuration divided

_:_ by the traoklns error that would be obtained In a continuous simulation .ith no
delays (or in flisht), e The normalization is determined by oomputtnS the
performanoe utillzin$ the ort$tnal, eontlnuous state equations and assumlns the

• only delay is that of the operator (.2 seconds).

: Figure 5 shows substantial et't'eots are introduced by the slmulation_
parttoularly at low ample rates. Even for the hiihest sample rate (T =

: .03!25), there la a 16-20 paroent performance desredatlon. A change of this
masnltude exoeed8 the normal Intra- and inter-sub_eot variability tn annul
traoklns tasks and vould, therefore, be expeoted to be at_nlfleant. For the
lowest sample rates the performance degradation tenses from 3_-50 peroent,
numbers that are clearly consequential. It Is olear that, from a oloaed-loop
traoklnS standpoint, A-B integration _a superior to Euler integration.

The results in Ftsure 5 assume that the only adjustments In pilot stratesy
reaultinS from the sllulation are an in.tease in prediotion tile to ¢ompensate
for simulator delays and the adoption of an internal model that ao¢ounte for the
amplitude distortions (and pole perturbations) lntroduoed by the CPU. The
results are baaed on the assumption of a fixed level of attention throu6hout.
However, the pilot say choose to devote more attention to the task (work harder)
and, thereby, reduoe traoklng error. A reasonable question to ask, then, is
"How tueh more attention to the task would be required to aohieve perfoman©e
levels oompsrable to those that oould be obtained In a continuous ailulation?"
This can be addressed usln8 the model for workload associated with the

9question: OCH. The result of this ana!ysis is shorn in Flgm'e 6.
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It can be seen from Figure 6 that to achieve the performance equivalent to

that for continuous simulation, the pilot would have to increase hls attentional

workload by factors up to three for the conditions considered. There is a

substantial workload penalty and it might be expected that a compromise between
performance degradation and increased workload might evolve. This would be the
case, especially if the pilot had not flown the vehicle or a continuous
simulator in the same task so that there would be no basis for setting a

criterion level of performance. /

Before leaving the workload question, a further point is worth noting. In

the describing function literature, it has been common practice to associate
workload with the generation of lead. However, there has been no quantitative
connection between the amount of lead and the increase in workload. Zn the
present context, one can think of the increased prediction time necessary to

compensate for simulator delays as imposing a (processing) workload analogous to

that of lead generation. The measure of attentlonal workload given previously
may then be thought of as an alternative means of quantifying the workload

imposed by the requirement for additional prediction.

It was anticipated that there would be an interaction between the effects

of simulation parameters and problem variables such as vehicle handling
qualities. Thus, the above tracking task was analyzed for the CAS/ON

configuration.

Figure 7 compares normalized longitudinal CAS-ON and CAS-OFF performance
for the basic simulatlon. It can be seen that the CAS-ON performance Is

degraded more by the discrete simulation than the CAS-OFF performance. These

results are explained by the fact that the delays introduced by digital
integration are larger for CAS-ON dynamics than they are for CAS-OFF dynamics.
The effects of longitudinal dynamics when viewed in terms Of absolute

performance are interesting and are also shown in Figure 7. The absolute

, performance for continuous simulation Is better for CAS-ON than CAS-OFF (by
, about 3.5 percent) and the sensitivity to incremental computation delay is about
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Figure 7. Effect of Vehicle Dynamics

the same for the two configurations. Thus, for a given simulation ,,
configuration, absolute performance for CAS-OXand CAS-OFFconfigurations will

,!be about the same if guler integration is used and the CAS-OFFconfiguration can
give better performance if A-B integration is used. In other words, the
discrete simulation washes out any improvement due to the CAS!

129

-_-__ ..... 1979007417-130



5.2 Hybrld Model

The hybrid model was used to investigate several issues that could not be
examined readily in the continuous model context. Results were limited to the
longitudinal unaugmented dynamics because of cost and time considerations
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Figure 8. Bffect of Operator Prediction Time

Figure 8 shows the sensitivity Of performance to delay compensation tlmem
for the basic simulation oonflguratlonswlth both Euler and A-B integrationand

t

l i, - l |

i WThe prediction time in excess of'that needed to compensate for the operator*s
intrinsic delay of .2 sec.

i
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for T = .I and T - .0625. The "Internal" models for the OCM in these cases are
the continuous approximations to the discrete transfers that incorporate
amplitude distortion effects; howevert no delay is added to the human's delay
of .2 seconds to account for the slmulatlons delays. Thus, we expect the
optlmal prediction times to be approximately equal to the delay introduced by
the slmulatlon. This is indeed the case as can be seen in Figure 8. For Euler
integration the minima occur at ".26 sec and ".2 see. for T = .I and .0625,
respectlvely; the corresponding slmulation delays are .27 and .19 .

For A-B integration the minima are at larger compensation times than for
Euler. This is a result of the method used to account for amplitude distortion.
(Reoall that a zero was introduced in the transfer function and this
necessitated an increased transport delay to match the phase lag at
mid-frequencies.) With T = .1, the optimal prediction time is around .3 seconds
and the simulation delay is ".32 seconds. For T = .0625, performance does not
appear to be very sensitive to prediction time in the neighborhood of the
optimum. The simulation delay is ".21 seconds and performance for this
prediction time is indistinguishablefrom optimal performance. Figure 8 also
shows a curve for the case where the operator's internal model does not include
a zero to match the amplitude distortion of A-B integration. It can be seen
that for this case a delay compensationof only ".17 seconds is required. This
corresponds to the delays introduced by the serve, pre-filter and zero-order
hold. The optimal performance is marginally poorer than for the case with
amplitude distortion included in the internalmodel. These results suggest that

although including the zero provides a better model of the effect of A-B

i integration, the increased delay compensation needed to offset the extra lead

should not be viewed here as a workload penalty.

i These results confirm the estimates of simulation delay used in the
continuous model. They also demonstrate implicitly how operators may adapt
their behavior to compensate for simulator inadequacy. The added prediction

required may impose a workload penalty as noted earlier.

_i Another form of adaptation to the simulation involves the pilots internal
_ model. Two questionsare of interest: 1.) What model will the trained operator

adopt when "flying" the simulator?; and 2.) What is the "transfer" effect of a
wrong model when transltionlng from discrete simulator to continuous simulator

_ (flight)? At least partial answers to these questions for the longltudlnal
dynamics and Euler integration are provided by the results shown in Figure 9.

_i Figure 9 gives performance vs. delay compensation for T = .I and two

_i Internal models. One internal model is that derived to match the correspondingdiscrete transfer function while the other is the basic continuous model. It

can be seen that better performance is obtained when the internal model
_ corresponds to the approximate discrete model implying that this is a better

model of the discrete simulation than is the original continuous model. Figure
9 also shows the effect of using the model correspondingto T = .I seconds in a

_' simulation where the actual sample period is .03125 seconds (i.e., nearly
continuous) as compared to using the model for T = .03125 seconds (i.e., the
correct one). If the operator optimizes delay compensation,performance will be
degraded by about I0_. If, on the other hand, the delay compensation
appropriate to T = .1 is used, a performance penalty of about 19S will be
incurred. The effect is not substantial here but i% might be in other tasks.
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Figure 9. Effect of lnternal Hodel

The effect of the cutoff frequencyof the de-allaslr_filter on performance
is shown in Figure 10. Euler integrationof the vehicle equations Is used and
other simulation parameters correspond to the basic configuration. The results
are for a sample frequency of 10 Ez (T = .I) so a cutoff frequency of_ • 5 Hz
satisfies the Nyqulst requirement. Results are obtained for_c = I, 5 and 20
Hz, respectively. The lowest value of_c = 20 Hz is based on the assu=ptlon
that there is not significant signal power beyond 5 Hz so there Is no need to
set the filter break-polnt at that frequency and incur the delay penalty. The
results In Figure 10 favor uslng the higher cutoff frequenoy,_c = 20 Hz, for
this problem. Furthermore, there Is a substantial penalty for using the low
frequency cutoff. These two results imply that allaslng Is not a problem here.
We also note that the performance minima for_ = 20 H= and 5 Hz occur at about

: the correct value of prediction time; the optimum prediction time for c = 1 Hz

?
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is much larger but not quite so large as the estimated total simulation delay of
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Figure 10. Effect of Deallaslng Filter Cutoff Frequency

•53 seconds.

The effects of using a first order hold instead of a zero order hold are
shown In Figure 11 for both Euler and A-B integration at T = .I and for Euler
integration at T = .0625. The corresponding best zero order hold performance
values are also shown for comparison purposes. At a s-mple period of .I
seconds, sllghtly lower tracking errors are obtained for guler integrationwlth
a first order hold than with a zero order hold; in addition, the minimum
performance is obtained wlth less delay compensation. The situation for A-B
integration and a .I second sample period is the reverse of that for guler.
That is, for A-B integration the first order hold degrades performance.

A possible explanation for these results is as follows. The first order
hold uses Intersample information which provides some lead. For long sample
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Figure 11. Effect of First Order Hold

periods and Euler integration, the effective lead provlded is apparently more
beneficial than the lag penalty associated with the higher order hold. The
beneficial effects of a first order hold should decrease as the sample perlod
decreases. This is supported by the results for T = .0_25 which show no
difference between the two holds. In the ease of A-B Antegratlon the added
delay of the first order hold dominates. This may be due to A-B integration
having an implicit i_trst order hold at the input, thereby reductr_ any advantage
in adding such a hold at the output.
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I6. _R! JJ_ COMCLUSION$

In this paper we have examined the effects of simulation parameters and
components on simulator fidelity, particularly with regard to predicting
operator performance and workload. Our focus has been on the dynamical aspects
of simulator primarily as they relate to closed loop control. We have generally
Ignored questions that would necessitate inclusion of detailed models for cue

perception leaving these to future study.

An approxtmate continuo_ model of the discrete simulation was Incorporated
in the standard optimal control model for the human operator. The resulting
continuous closed-loop model was used to analyze both overall simulation effects

_ and the effects of individual elements. The results showed that, as compared to
an ideal continuous simulation, the discrete simulation could result in
significantperformanceand/or workload penalties. The magnitude of the effects
depended strongly on sample period as expected. From a closed-loop standpoint
it seemed clear that A-B integrationwas much to be preferred. With respect to
the other simulation components it can be said that any reduction In delay is
desirable. Such reductions inevitably involve increased costs (hs-dware or
software) which must be balanced against the expected improvements.

In addition to the continuous model, a hybrid model was developed to allow _
investigation of situations that could not be treated adequately with the
continuous model. Several interesting results were obtained wlth this model.
It was shown that for this (fairly typical) aircraft control problem signal
bandwldths were such that the de-allasing filter cutoff frequency could be set
at a value greater than half the sample frequency. Also, there appeared to be a
potential under certain conditions for improved simulator performance wlth a
first order hold (rather than a zero order hold). The model was also used to
show demonstrable effects for adopting the simulator dynamics as an internal
model. The need to compensate for simulator delays via added prediction was
also shown.

We believe the models developed here can be very useful in developing
engineering requirements for flight simulators. These requirements will be
problem dependent which is one reason why models are needed. As we see it now,

the process for using the models would involve the following steps:
i

i) Use standard OCM to analyze ideal continuous simulation to develop
baseline performance and to determine expected signal bandwidths.

ti) Analyze distortion introduced by discrete Integration schemes and
develop continuous models for discrete dynamics valid over the band of
interest.

lit) Analyze effects of integration, cue dynamics etc. using continuous
model.

iv) Use hybrid model to examine effects of data reconstruction,
de-altasing cutoff frequency etc.
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Before this procedure could be used with complete confidence the models
described herein need further validation and extension. It is especially
important to collect data in a carefully controlled experiment to verify the
individual simulation effects.
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