1,320 research outputs found

    Contracts in Practice

    Get PDF
    Contracts are a form of lightweight formal specification embedded in the program text. Being executable parts of the code, they encourage programmers to devote proper attention to specifications, and help maintain consistency between specification and implementation as the program evolves. The present study investigates how contracts are used in the practice of software development. Based on an extensive empirical analysis of 21 contract-equipped Eiffel, C#, and Java projects totaling more than 260 million lines of code over 7700 revisions, it explores, among other questions: 1) which kinds of contract elements (preconditions, postconditions, class invariants) are used more often; 2) how contracts evolve over time; 3) the relationship between implementation changes and contract changes; and 4) the role of inheritance in the process. It has found, among other results, that: the percentage of program elements that include contracts is above 33% for most projects and tends to be stable over time; there is no strong preference for a certain type of contract element; contracts are quite stable compared to implementations; and inheritance does not significantly affect qualitative trends of contract usage

    From Event-B models to Dafny code contracts

    No full text
    International audienceThe constructive approach to software correctness aims at formal modelling and verification of the structure and behaviour of a system in different levels of abstraction. In contrast, the analytical approach to software verification focuses on code level correctness and its verification. Therefore it would seem that the constructive and analytical approaches should complement each other well. To demonstrate this idea we present a case for linking two existing verification methods, Event-B (constructive) and Dafny (analytical). This approach combines the power of Event-B abstraction and its stepwise refinement with the verification capabilities of Dafny. We presented a small case study to demonstrate this approach and outline of the rules for transforming Event-B events to Dafny contracts. Finally, a tool for automatic generation of Dafny contracts from Event-B formal models is presented

    Decoherence of a Superposition of Macroscopic Current States in a SQUID

    Full text link
    We show that fundamental conservation laws mandate parameter-free mechanisms of decoherence of quantum oscillations of the superconducting current between opposite directions in a SQUID -- emission of phonons and photons at the oscillation frequency. The corresponding rates are computed and compared with experimental findings. The decohering effects of external mechanical and magnetic noise are investigated

    Guidelines for the Selection of Physical Literacy Measures in Physical Education in Australia

    Get PDF
    Assessment of physical literacy poses a dilemma of what instrument to use. There is currently no guide regarding the suitability of common assessment approaches. The purpose of this brief communication is to provide a user's guide for selecting physical literacy assessment instruments appropriate for use in school physical education and sport settings. While recommendations regarding specific instruments are not provided, the guide offers information about key attributes and considerations for the use. A decision flow chart has been developed to assist teachers and affiliated school practitioners to select appropriate methods of assessing physical literacy. School PE and sport scenarios are presented to illustrate this process. It is important that practitioners are empowered to select the most appropriate instrument/s to suit their needs

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review

    Defining Physical Literacy for Application in Australia: A Modified Delphi Method

    Get PDF
    Purpose. The development of a physical literacy definition and standards framework suitable for implementation in Australia. Method. Modified Delphi methodology. Results . Consensus was established on four defining statements: Core – Physical literacy is lifelong holistic learning acquired and applied in movement and physical activity contexts; Composition – Physical literacy reflects ongoing changes integrating physical, psychological, cognitive and social capabilities; Importance – Physical literacy is vital in helping us lead healthy and fulfilling lives through movement and physical activity; Aspiration – A physically literate person is able to draw on their integrated physical, psychological, cognitive, and social capacities to support health promoting and fulfilling movement and physical activity, relative to their situation and context, throughout the lifespan. The standards framework addressed four learning domains (physical, psychological, cognitive, and social), spanning five learning configurations/levels. Conclusion. The development of a bespoke program for a new context has important implications for both existing and future program

    A miniaturized bioreactor system for the evaluation of cell interaction with designed substrates in perfusion culture

    Get PDF
    In tissue engineering, the chemical and topographical cues within three-dimensional (3D) scaffolds are normally tested using static cell cultures but applied directly to tissue cultures in perfusion bioreactors. As human cells are very sensitive to the changes of culture environment, it is essential to evaluate the performance of any chemical, and topographical cues in a perfused environment before they are applied to tissue engineering. Thus the aim of this research was to bridge the gap between static and perfusion cultures by addressing the effect of perfusion on cell cultures within 3D scaffolds. For this we developed a scale down bioreactor system, which allows to evaluate the effectiveness of various chemical and topographical cues incorporated into our previously developed tubular ε-polycaprolactone scaffold under perfused conditions. Investigation of two exemplary cell types (fibroblasts and cortical astrocytes) using the miniaturized bioreactor indicated that: (1) quick and firm cell adhesion in 3D scaffold was critical for cell survival in perfusion culture compared with static culture, thus cell seeding procedures for static cultures might not be applicable. Therefore it was necessary to re-evaluate cell attachment on different surfaces under perfused conditions before a 3D scaffold was applied for tissue cultures, (2) continuous medium perfusion adversely influenced cell spread and survival, which could be balanced by intermittent perfusion, (3) micro-grooves still maintained its influences on cell alignment under perfused conditions, while medium perfusion demonstrated additional influence on fibroblast alignment but not on astrocyte alignment on grooved substrates. This research demonstrated that the mini-bioreactor system is crucial for the development of functional scaffolds with suitable chemical and topographical cues by bridging the gap between static culture and perfusion culture

    Complementarity of the CERN Large Hadron Collider and the e+ee^+e^- International Linear Collider

    Full text link
    The next-generation high-energy facilities, the CERN Large Hadron Collider (LHC) and the prospective e+ee^+e^- International Linear Collider (ILC), are expected to unravel new structures of matter and forces from the electroweak scale to the TeV scale. In this report we review the complementary role of LHC and ILC in drawing a comprehensive and high-precision picture of the mechanism breaking the electroweak symmetries and generating mass, and the unification of forces in the frame of supersymmetry.Comment: 14 pages, 17 figures, to be published in "Supersymmetry on the Eve of the LHC", a special volume of European Physical Journal C, Particles and Fields (EPJC) in memory of Julius Wes

    Entanglement transformation at absorbing and amplifying four-port devices

    Get PDF
    Dielectric four-port devices play an important role in optical quantum information processing. Since for causality reasons the permittivity is a complex function of frequency, dielectrics are typical examples of noisy quantum channels, which cannot preserve quantum coherence. To study the effects of quantum decoherence, we start from the quantized electromagnetic field in an arbitrary Kramers--Kronig dielectric of given complex permittivity and construct the transformation relating the output quantum state to the input quantum state, without placing restrictions on the frequency. We apply the formalism to some typical examples in quantum communication. In particular we show that for entangled qubits the Bell-basis states Ψ±>|\Psi^\pm> are more robust against decoherence than the states Φ±>|\Phi^\pm>.Comment: 12 pages, revtex, 10 eps figures, minor corrections in Appendi
    corecore