16,759 research outputs found

    Retrodiction with two-level atoms: atomic previvals

    Get PDF
    In the Jaynes-Cummings model a two-level atom interacts with a single-mode electromagnetic field. Quantum mechanics predicts collapses and revivals in the probability that a measurement will show the atom to be excited at various times after the initial preparation of the atom and field. In retrodictive quantum mechanics we seek the probability that the atom was prepared in a particular state given the initial state of the field and the outcome of a later measurement on the atom. Although this is not simply the time reverse of the usual predictive problem, we demonstrate in this paper that retrodictive collapses and revivals also exist. We highlight the differences between predictive and retrodictive evolutions and describe an interesting situation where the prepared state is essentially unretrodictable.Comment: 15 pages, 3 (5) figure

    Effects of self-phase modulation on weak nonlinear optical quantum gates

    Full text link
    A possible two-qubit gate for optical quantum computing is the parity gate based on the weak Kerr effect. Two photonic qubits modulate the phase of a coherent state, and a quadrature measurement of the coherent state reveals the parity of the two qubits without destroying the photons. This can be used to create so-called cluster states, a universal resource for quantum computing. Here, the effect of self-phase modulation on the parity gate is studied, introducing generating functions for the Wigner function of a modulated coherent state. For materials with non-EIT-based Kerr nonlinearities, there is typically a self-phase modulation that is half the magnitude of the cross-phase modulation. Therefore, this effect cannot be ignored. It is shown that for a large class of physical implementations of the phase modulation, the quadrature measurement cannot distinguish between odd and even parity. Consequently, weak nonlinear parity gates must be implemented with physical systems where the self-phase modulation is negligable.Comment: 7 pages, 4 figure

    Retrodiction as a tool for micromaser field measurements

    Get PDF
    We use retrodictive quantum theory to describe cavity field measurements by successive atomic detections in the micromaser. We calculate the state of the micromaser cavity field prior to detection of sequences of atoms in either the excited or ground state, for atoms that are initially prepared in the excited state. This provides the POM elements, which describe such sequences of measurements.Comment: 20 pages, 4(8) figure

    Dependence of the evolution of the cavity radiation of a coherently pumped correlated emission laser on dephasing and phase fluctuation

    Full text link
    Analysis of the dynamics of the cavity radiation of a coherently pumped correlated emission laser is presented. The phase fluctuation and dephasing are found to affect the time evolution of the two-mode squeezing and intensity of the cavity radiation significantly. The intensity and degree of the two-mode squeezing increase at early stages of the process with time, but this trend changes rapidly afterwards. It is also shown that they increase with phase fluctuation and dephasing in the strong driving limit, however the situation appears to be opposite in the weak driving limit. This essentially suggests that the phase fluctuation and dephasing weaken the coherence induced by a strong driving mechanism so that the spontaneous emission gets a chance. The other important aspect of the phase fluctuation, in this regard, is the relaxation of the time at which the maximum squeezing is manifested as well as the time in which the radiation remains in a squeezed state.Comment: 10 pages, 12 figure

    Difficulty of distinguishing product states locally

    Get PDF
    Non-locality without entanglement is a rather counter-intuitive phenomenon in which information may be encoded entirely in product (unentangled) states of composite quantum systems in such a way that local measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product states, the gap in performance is known to be rather small when arbitrary local strategies are allowed. Here we restrict to local strategies readily achievable with current technology; those requiring neither a quantum memory nor joint operations. We show that, even for measurements on pure product states there can be a large gap between such strategies and theoretically optimal performance. Thus even in the absence of entanglement physically realizable local strategies can be far from optimal for extracting quantum information.Comment: 5 pages, 1 figur

    Discrimination of two mixed quantum states with maximum confidence and minimum probability of inconclusive results

    Full text link
    We study an optimized measurement that discriminates two mixed quantum states with maximum confidence for each conclusive result, thereby keeping the overall probability of inconclusive results as small as possible. When the rank of the detection operators associated with the two different conclusive outcomes does not exceed unity we obtain a general solution. As an application, we consider the discrimination of two mixed qubit states. Moreover, for the case of higher-rank detection operators we give a solution for particular states. The relation of the optimized measurement to other discrimination schemes is also discussed.Comment: 7 pages, 1 figure, accepted for publication in Phys. Rev.

    Combining real and virtual Higgs boson mass constraints

    Get PDF
    Within the framework of the standard model we observe that there is a significant discrepancy between the most precise ZZ boson decay asymmetry measurement and the limit from direct searches for Higgs boson production. Using methods inspired by the Particle Data Group we explore the possible effect on fits of the Higgs boson mass. In each case the central value and the 95% confidence level upper limit increase significantly relative to the conventional fit. The results suggest caution in drawing conclusions about the Higgs boson mass from the existing data.Comment: 11 pages, Latex. Citations are added and paper is otherwise reconciled with version to be published in Physical Review Letter

    On the Quantum Phase Operator for Coherent States

    Full text link
    In papers by Lynch [Phys. Rev. A41, 2841 (1990)] and Gerry and Urbanski [Phys. Rev. A42, 662 (1990)] it has been argued that the phase-fluctuation laser experiments of Gerhardt, B\"uchler and Lifkin [Phys. Lett. 49A, 119 (1974)] are in good agreement with the variance of the Pegg-Barnett phase operator for a coherent state, even for a small number of photons. We argue that this is not conclusive. In fact, we show that the variance of the phase in fact depends on the relative phase between the phase of the coherent state and the off-set phase ϕ0\phi_0 of the Pegg-Barnett phase operator. This off-set phase is replaced with the phase of a reference beam in an actual experiment and we show that several choices of such a relative phase can be fitted to the experimental data. We also discuss the Noh, Foug\`{e}res and Mandel [Phys.Rev. A46, 2840 (1992)] relative phase experiment in terms of the Pegg-Barnett phase taking post-selection conditions into account.Comment: 8 pages, 8 figures. Typographical errors and misprints have been corrected. The outline of the paper has also been changed. Physica Scripta (in press

    Decoherence of number states in phase-sensitive reservoirs

    Full text link
    The non-unitary evolution of initial number states in general Gaussian environments is solved analytically. Decoherence in the channels is quantified by determining explicitly the purity of the state at any time. The influence of the squeezing of the bath on decoherence is discussed. The behavior of coherent superpositions of number states is addressed as well.Comment: 5 pages, 2 figures, minor changes, references adde

    Joint measurements and Bell inequalities

    Get PDF
    Joint quantum measurements of non-commuting observables are possible, if one accepts an increase in the measured variances. A necessary condition for a joint measurement to be possible is that a joint probability distribution exists for the measurement. This fact suggests that there may be a link with Bell inequalities, as these will be satisfied if and only if a joint probability distribution for all involved observables exists. We investigate the connections between Bell inequalities and conditions for joint quantum measurements to be possible. Mermin's inequality for the three-particle Greenberger-Horne-Zeilinger state turns out to be equivalent to the condition for a joint measurement on two out of the three quantum systems to exist. Gisin's Bell inequality for three co-planar measurement directions, meanwhile, is shown to be less strict than the condition for the corresponding joint measurement
    corecore