843 research outputs found

    Space-time variation of malaria incidence in Yunnan province, China

    Get PDF
    BACKGROUND Understanding spatio-temporal variation in malaria incidence provides a basis for effective disease control planning and monitoring. METHODS Monthly surveillance data between 1991 and 2006 for Plasmodium vivax and Plasmodium falciparum malaria across 128 counties were assembled for Yunnan, a province of China with one of the highest burdens of malaria. County-level Bayesian Poisson regression models of incidence were constructed, with effects for rainfall, maximum temperature and temporal trend. The model also allowed for spatial variation in county-level incidence and temporal trend, and dependence between incidence in June-September and the preceding January-February. RESULTS Models revealed strong associations between malaria incidence and both rainfall and maximum temperature. There was a significant association between incidence in June-September and the preceding January-February. Raw standardised morbidity ratios showed a high incidence in some counties bordering Myanmar, Laos and Vietnam, and counties in the Red River valley. Clusters of counties in south-western and northern Yunnan were identified that had high incidence not explained by climate. The overall trend in incidence decreased, but there was significant variation between counties. CONCLUSION Dependence between incidence in summer and the preceding January-February suggests a role of intrinsic host-pathogen dynamics. Incidence during the summer peak might be predictable based on incidence in January-February, facilitating malaria control planning, scaled months in advance to the magnitude of the summer malaria burden. Heterogeneities in county-level temporal trends suggest that reductions in the burden of malaria have been unevenly distributed throughout the province.This project was supported by a University of Queensland New Research Scientist Start-Up Fund grant. RWS is a Wellcome Trust Principal Research Fellow (#079080) and receives additional support from the Wellcome Trust for the Malaria Atlas Project (MAP, http://www.map.ox.ac.uk)

    Molecular evolutionary trends and biosynthesis pathways in the Oribatida revealed by the genome of Archegozetes longisetosus

    Get PDF
    Background Oribatid mites are a specious order of microarthropods within the subphylum Chelicerata, compromising about 11,000 described species. They are ubiquitously distributed across different microhabitats in all terrestrial ecosystems around the world and were among the first animals colonizing terrestrial habitats as decomposers and scavengers. Noted for their biosynthesis capacities and biochemical diversity, the majority of oribatid mites possess a pair of exocrine opisthonotal oil-glands used for chemical defense and communication. Genomic resources are lacking for oribatids despite their species richness and ecological importance. Results We used a comparative genomic approach to investigate the developmental, sensory and glandular biosynthetic gene repertoire of the clonal, all-female oribatid mite species Archegozetes longisetosus Aoki, a model species used by numerous laboratories for the past 30 years. Here, we present a 190-Mb genome assembly constructed from Nanopore MinION and Illumina sequencing platforms with 23,825 predicted protein-coding genes. Genomic and transcriptional analyses revealed patterns of reduced body segmentation and loss of segmental identity gene abd-A within Acariformes, and unexpected expression of key eye development genes in these eyeless mites across developmental stages. Consistent with the soil dwelling lifestyle, investigation of the sensory genes revealed a species-specific expansion of gustatory receptors, the largest chemoreceptor family in the genome used in olfaction, and evidence of horizontally transferred enzymes used in cell wall degradation of plant and fungal matter, both components of the Archegozetes longisetosus diet. Using biochemical and genomic data, we were able to delineate the backbone biosynthesis of monoterpenes, an important class of compounds found in the major exocrine gland system of Oribatida – the oil glands. Conclusions With the Archegozetes longisetosus genome, we now have the first high-quality, annotated genome of an oribatid mite genome. Given the mite’s strength as an experimental model, the new sequence resources provided here will serve as the foundation for molecular research in Oribatida and will enable a broader understanding of chelicerate evolution

    Estimating the Cost of Health Care-Associated Infections: Mind Your p's and q's

    Get PDF
    Monetary valuations of the economic cost of health care-associated infections (HAIs) are important for decision making and should be estimated accurately. Erroneously high estimates of costs, designed to jolt decision makers into action, may do more harm than good in the struggle to attract funding for infection control. Expectations among policy makers might be raised, and then they are disappointed when the reduction in the number of HAIs does not yield the anticipated cost saving. For this article, we critically review the field and discuss 3 questions. Why measure the cost of an HAI? What outcome should be used to measure the cost of an HAI? What is the best method for making this measurement? The aim is to encourage researchers to collect and then disseminate information that accurately guides decisions about the economic value of expanding or changing current infection control activitie

    Detection of Anisotropies in the Gravitational-Wave Stochastic Background

    Get PDF
    By correlating the signals from a pair of gravitational-wave detectors, one can undertake sensitive searches for a stochastic background of gravitational radiation. If the stochastic background is anisotropic, then this correlated signal varies harmonically with the earth's rotation. We calculate how the harmonics of this varying signal are related to the multipole moments which characterize the anisotropy, and give a formula for the signal-to-noise ratio of a given harmonic. The specific case of the two LIGO (Laser Interferometric Gravitational Observatory) detectors, which will begin operation around the year 2000, is analyzed in detail. We consider two possible examples of anisotropy. If the gravitational-wave stochastic background contains a dipole intensity anisotropy whose origin (like that of the Cosmic Background Radiation) is motion of our local system, then that anisotropy will be observable by the advanced LIGO detector (with 90% confidence in one year of observation) if \Omega_{gw} > 5.3 \times 10^{-8} h_{100}^{-2}. We also study the signal produced by stochastic sources distributed in the same way as the luminous matter in the galactic disk, and in the same way as the galactic halo. The anisotropy due to sources distributed as the galactic disk or as the galactic halo will be observable by the advanced LIGO detector (with 90% confidence in one year of observation) if \Omega_{gw} > 1.8 \times 10^{-10} h_{100}^{-2} or \Omega_{gw} > 6.7 \times 10^{-8} h_{100}^{-2}, respectively.Comment: 25 pages, Latex with RevTeX and epsfig, now includes S/N ratio calculations, expected response from anisotropy due to local motion & sources in galax

    Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected

    Get PDF
    The recent global outbreak of Zika virus (ZIKV) infection has been linked to severe neurological disorders affecting the peripheral and central nervous systems (PNS and CNS, respectively). The pathobiology underlying these diverse clinical phenotypes are the subject of intense research; however, even the principal neural cell types vulnerable to productive Zika infection remain poorly characterised. Here we used CNS and PNS myelinating cultures from wild type and Ifnar1 knockout mice to examine neuronal and glial tropism and short-term consequences of direct infection with a Brazilian variant of ZIKV. Cell cultures were infected pre- or post-myelination for various intervals, then stained with cell-type and ZIKV-specific antibodies. In bypassing systemic immunity using ex vivo culture, and the type I interferon response in Ifnar1 deficient cells, we were able to evaluate the intrinsic infectivity of neural cells. Through systematic quantification of ZIKV infected cells in myelinating cultures, we found that ZIKV infection is enhanced in the absence of the type I interferon responses and that CNS cells are considerably more susceptible to infection than PNS cells. In particular, we demonstrate that CNS axons and myelinating oligodendrocytes are especially vulnerable to injury. These results have implications for understanding the pathobiology of neurological symptoms associated with ZIKV infection. Furthermore, we provide a quantifiable ex vivo infection model that can be used for fundamental and therapeutic studies on viral neuroinvasion and its consequences

    Assessment of Heat-Related Health Impacts in Brisbane, Australia: Comparison of Different Heatwave Definitions

    Get PDF
    Background: There is no global definition of a heatwave because local acclimatisation and adaptation influence the impact of extreme heat. Even at a local level there can be multiple heatwave definitions, based on varying temperature levels or time periods. We investigated the relationship between heatwaves and health outcomes using ten different heatwave definitions in Brisbane, Australia. ---------- Methodology/Principal Findings: We used daily data on climate, air pollution, and emergency hospital admissions in Brisbane between January 1996 and December 2005; and mortality between January 1996 and November 2004. Case-crossover analyses were used to assess the relationship between each of the ten heatwave definitions and health outcomes. During heatwaves there was a statistically significant increase in emergency hospital admissions for all ten definitions, with odds ratios ranging from 1.03 to 1.18. A statistically significant increase in the odds ratios of mortality was also found for eight definitions. The size of the heat-related impact varied between definitions.---------- Conclusions/Significance Even a small change in the heatwave definition had an appreciable effect on the estimated health impact. It is important to identify an appropriate definition of heatwave locally and to understand its health effects in order to develop appropriate public health intervention strategies to prevent and mitigate the impact of heatwaves

    Biotic Indicators for Ecological State Change in Amazonian Floodplains

    Get PDF
    Riverine floodplains are biologically diverse and productive ecosystems. Although tropical floodplains remain relatively conserved and ecologically functional compared to those at higher latitudes, they face accelerated hydropower development, climate change, and deforestation. Alterations to the flood pulse could act synergistically with other drivers of change to promote profound ecological state change at a large spatial scale. State change occurs when an ecosystem reaches a critical threshold or tipping point, which leads to an alternative qualitative state for the ecosystem. Visualizing an alternative state for Amazonian floodplains is not straightforward. Yet, it is critical to recognize that changes to the flood pulse could push tropical floodplain ecosystems over a tipping point with cascading adverse effects on biodiversity and ecosystem services. We characterize the Amazonian flood pulse regime, summarize evidence of flood pulse change, assess potential ecological repercussions, and provide a monitoring framework for tracking flood pulse change and detecting biotic responses

    The Effect of Ambient Air Pollution during Early Pregnancy on Fetal Ultrasonic Measurements during Mid-Pregnancy

    Get PDF
    BACKGROUND: Over the past decade there has been mounting evidence that ambient air pollution during pregnancy influences fetal growth. OBJECTIVES: This study was designed to examine possible associations between fetal ultrasonic measurements collected from 15,623 scans (13–26 weeks gestation) and ambient air pollution during early pregnancy. METHODS: We calculated mothers ’ average monthly exposures over the first 4 months of pregnancy for the following pollutants: particulate matter < 10 µm aerodynamic diameter (PM10), ozone, nitrogen dioxide, and sulfur dioxide. We examined associations with fetal femur length (FL), biparietal diameter (BPD), head circumference (HC), and abdominal circumference (AC). Final analyses included scans from only those women within 2 km of an air pollution monitoring site. We controlled for long-term trend, season, temperature, gestation, mother’s age, socioeconomic status, and fetal sex. RESULTS: A reduction in fetal AC was associated with O3 during days 31–60 [–1.42 mm; 95 % confidence interval (CI), –2.74 to –0.09], SO2 during days 61–90 (–1.67 mm; 95 % CI, –2.94 to –0.40), and PM10 during days 91–120 (–0.78 mm; 95 % CI, –1.49 to –0.08). Other results showed a reduction in BPD (–0.68 mm; 95 % CI, –1.09 to –0.27) associated with SO2 during days 0–30, a reduction in HC (–1.02 mm; 95 % CI, –1.78 to –0.26) associated with PM10 during days 91–120, and a reduction in FL associated with PM10 during days 0–30 (–0.28 mm; 95 % CI, –0.48 to –0.08) and 91–120 (–0.23; 95 % CI, –0.42 to –0.04). CONCLUSION: We found strong effects of ambient air pollution on ultrasound measures. Future research, including more individually detailed data, is needed to confirm our results. KEY WORDS: air pollution, fetal growth, pregnancy, temperature, ultrasound. Environ Health Perspect 116:362–369 (2008). doi:10.1289/ehp.10720 available vi
    corecore