1,154 research outputs found

    AD Leonis: Radial Velocity Signal of Stellar Rotation or Spin–Orbit Resonance?

    Get PDF
    AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin–orbit resonance. For such a scenario and no spin–orbit misalignment, the measured v sin i indicates an inclination angle of 15°̣5 ± 2°̣5 and a planetary companion mass of 0.237 ± 0.047 M Jup

    Suppressed Far-UV stellar activity and low planetary mass-loss in the WASP-18 system

    Get PDF
    WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (R′HK activity parameter lies slightly below the basal level; there is no significant time-variability in the log R′HK value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of HST aimed at explaining this anomaly. From the star’s spectral energy distribution, we infer the extinction (E(B − V) ≈ 0.01mag) and then the ISM column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s−1 cm−2. We employ the rescaled XUV solar fluxes to model of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10−20MJ Gyr−1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape

    Dynamical model for spindown of solar-type stars

    Get PDF
    After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength B| B| versus rotation rate, and frequency of magnetic field ωcyc{\omega }_{\mathrm{cyc}} versus rotation rate. For fast rotating stars we find that: (i) there is an exponential spindown Ωe1.35t{\rm{\Omega }}\propto {e}^{-1.35t}, with t measured in Gyr; (ii) magnetic activity saturates for higher rotation rate; (iii) ωcycΩ0.83{\omega }_{\mathrm{cyc}}\propto {{\rm{\Omega }}}^{0.83}. For slow rotating stars we find: (i) a power-law spindown Ωt0.52{\rm{\Omega }}\propto {t}^{-0.52}; (ii) that magnetic activity scales roughly linearly with rotation rate; (iii) ωcycΩ1.16{\omega }_{\mathrm{cyc}}\propto {{\rm{\Omega }}}^{1.16}. The results obtained from our investigations are in good agreement with observations. The Vaughan–Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution

    A comparison of flare forecasting methods, I: results from the “All-clear” workshop

    Get PDF
    YesSolar flares produce radiation which can have an almost immediate effect on the near-Earth environ- ment, making it crucial to forecast flares in order to mitigate their negative effects. The number of published approaches to flare forecasting using photospheric magnetic field observations has prolifer- ated, with varying claims about how well each works. Because of the different analysis techniques and data sets used, it is essentially impossible to compare the results from the literature. This problem is exacerbated by the low event rates of large solar flares. The challenges of forecasting rare events have long been recognized in the meteorology community, but have yet to be fully acknowledged by the space weather community. During the interagency workshop on “all clear” forecasts held in Boulder, CO in 2009, the performance of a number of existing algorithms was compared on common data sets, specifically line-of-sight magnetic field and continuum intensity images from MDI, with consistent definitions of what constitutes an event. We demonstrate the importance of making such systematic comparisons, and of using standard verification statistics to determine what constitutes a good prediction scheme. When a comparison was made in this fashion, no one method clearly outperformed all others, which may in part be due to the strong correlations among the parameters used by different methods to characterize an active region. For M-class flares and above, the set of methods tends towards a weakly positive skill score (as measured with several distinct metrics), with no participating method proving substantially better than climatological forecasts.This work is the outcome of many collaborative and cooperative efforts. The 2009 “Forecasting the All-Clear” Workshop in Boulder, CO was sponsored by NASA/Johnson Space Flight Center’s Space Radiation Analysis Group, the National Center for Atmospheric Research, and the NOAA/Space Weather Prediction Center, with additional travel support for participating scientists from NASA LWS TRT NNH09CE72C to NWRA. The authors thank the participants of that workshop, in particular Drs. Neal Zapp, Dan Fry, Doug Biesecker, for the informative discussions during those three crazy days, and NCAR’s Susan Baltuch and NWRA’s Janet Biggs for organizational prowess. Workshop preparation and analysis support was provided for GB, KDL by NASA LWS TRT NNH09CE72C, and NASA Heliophysics GI NNH12CG10C. PAH and DSB received funding from the European Space Agency PRODEX Programme, while DSB and MKG also received funding from the European Union’s Horizon 2020 research and in- novation programme under grant agreement No. 640216 (FLARECAST project). MKG also acknowledges research performed under the A-EFFort project and subsequent service implementation, supported under ESA Contract number 4000111994/14/D/MPR. YY was supported by the National Science Foundation under grants ATM 09-36665, ATM 07-16950, ATM-0745744 and by NASA under grants NNX0-7AH78G, NNXO-8AQ90G. YY owes his deepest gratitude to his advisers Prof. Frank Y. Shih, Prof. Haimin Wang and Prof. Ju Jing for long discussions, for reading previous drafts of his work and providing many valuable comments that improved the presentation and contents of this work. JMA was supported by NSF Career Grant AGS-1255024 and by a NMSU Vice President for Research Interdisciplinary Research Grant

    A novel method for identifying exoplanetary rings

    Get PDF
    ABSTRACT: The discovery of rings around extrasolar planets (“exorings”) is one of the next breakthroughs in exoplanetary research. Previous studies have explored the feasibility of detecting exorings with present and futuren photometric sensitivities by seeking anomalous deviations in the residuals of a standard transit light curve fit, at the level of ~-100 ppm for Kronian rings. In this work, we explore two much larger observational consequences of exorings: (1) the significant increase in transit depth that may lead to the misclassification of ringed planetary candidates as false-positives and/or the underestimation of planetary density; and (2) the so-called “photo-ring” effect, a new asterodensity profiling effect, revealed by a comparison of the light curve derived stellar density to that measured with independent methods (e.g., asteroseismology). While these methods do not provide an unambiguous detection of exorings, we show that the large amplitude of these effects, combined with their relatively simple analytic description, makes them highly suited to large-scale surveys to identify candidate ringed planets worthy of more detailed investigation. Moreover, these methods lend themselves to ensemble analyses seeking to uncover evidence of a population of ringed planets. We describe the method in detail, develop the basic underlying formalism, and test it in the parameter space of rings and transit configuration. We discuss the prospects of using this method for the first systematic search of exoplanetary rings in the Kepler database and provide a basic computational code for implementing it

    Buoyancy-driven Magnetohydrodynamic Waves

    Get PDF
    Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies of standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt–Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings

    Inhaled corticosteroids and long-acting beta-agonists in adult asthma: a winning combination in all?

    Get PDF
    In the recent years, considerable insight has been gained in to the optimal management of adult asthma. Most adult patients with asthma have mild intermittent and persistent disease, and it is acknowledged that many patients do not reach full control of all symptoms and signs of asthma. Those with mild persistent asthma are usually not well controlled without inhaled corticosteroids (ICS). Studies have provided firm evidence that these patients can be well controlled when receiving ICS, especially when disease is of recent onset. This treatment should be given on a daily basis at a low dose and when providing a good response should be maintained to prevent severe exacerbations and disease deterioration. Intermittent ICS treatment at the time of an exacerbation has also been suggested as a strategy for mild persistent asthma, but it is less effective than low-dose regular treatment for most outcomes. Adding a long-acting beta-agonist (LABA) to ICS appears to be unnecessary in most of these patients for optimising control of their asthma. Patients with moderate persistent asthma can be regarded as those who are not ideally controlled on low-dose ICS alone. The combination of an ICS and LABA is preferred in these patients, irrespective of the brand of medicine, and this combination is better than doubling or even quadrupling the dose of ICS to achieve better asthma control and reduce exacerbation risks. An ICS/LABA combination in a single inhaler represents a safe, effective and convenient treatment option for the management of patients with asthma unstable on inhaled steroids alone. Ideally, once asthma is under full control, the dose of inhaled steroids should be reduced, which is possible in many patients. The duration of treatment before initiating this dose reduction has, however, not been fully established. One of the combinations available to treat asthma (budesonide and formoterol) has also been assessed as both maintenance and rescue therapy with a further reduction in the risk for a severe exacerbation. Clinical effectiveness in the real world now has to be established, since this approach likely improves compliance with regular maintenance therapy

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres
    corecore