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ABSTRACT

Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs)
that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar
atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an
equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified
medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It
is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies of
standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly
varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the
hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown
that the frequency of IGWs may depart significantly from the Brunt—Viisild frequency, even for a weak magnetic
field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has
previously been misinterpreted. An observational test is urged to validate the theoretical findings.
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1. INTRODUCTION

Hydrodynamic waves in a gravitationally stratified, com-
pressible medium have been well studied. In addition to the
gravitationally modified acoustic wave (Lamb 1932), where
pressure is the primary restoring force, there are also internal
gravity, or buoyancy, waves (see e.g., Lighthill 1978). In
stars like the Sun, global internal oscillations (standing modes
of the entire stellar interior) are known as p- and g-modes
(Cowling 1941) depending on the main driving force: pressure
or buoyancy.

Most of our knowledge of the Sun’s interior comes from the
study of p-modes (see, e.g., Christensen-Dalsgaard 2002),
while g-modes have yet to be convincingly observed (see
Appourchaux et al. 2010). Acoustic and internal gravity waves
(IGWs) are, however, also supported by the solar atmosphere,
where they are sometimes known as atmospheric p- and g-
modes. In contrast to interior g-modes, atmospheric IGWs have
already been observed by, e.g., Komm et al. (1991), Stodilka
(2008), and Straus et al. (2008). However, given the nature and
purpose of these observations, they are not in the format to
make direct magnetoseismic analysis, although they are strong
motivations.

IGWs may be generated by convective motion in the solar
sub-surface convection region. Numerical simulations by Brun
et al. (2013) have shown that internal g-modes may be excited
in the solar radiative interior by turbulent convection. Atmo-
spheric IGWs in the solar atmosphere may also be excited in a
similar fashion, as suggested by Komm et al. (1991).

Among the many differences, one major difference between
the solar interior and atmosphere is the presence and potential
role of magnetism. The solar atmosphere is permeated by
magnetic fields, which play a vital role in structuring the
atmosphere and in the dynamics of atmospheric plasma. Often,
we must use a magnetohydrodynamic (MHD) description of
solar plasmas in the presence of a magnetic field. It is well

known that a magnetic field has significant implications for
helioseismology; see, e.g., the reviews by Thompson (2006)
and Erdélyi (2006a, 2006b). The details of how the magnetic
field affects the properties (e.g., frequency, amplitude,
polarization, reflection or refraction, etc.) of acoustic or internal
gravity modes is a fundamental question. Once it is known how
these changes scale with the presence of a magnetic field, wave
measurements may be inverted to deduce information about the
magnetic field itself. This is a relatively new area of solar
physics, and is referred to as solar magneto-seismology when
applied to diagnostics.

The frequencies of p-modes are seen to vary with the solar
cycle. Chaplin et al. (2007) used data taken over three solar
cycles to analyze changes to p-mode frequencies due to these
cycles. These are global oscillations affected by variations to
the overall magnetic field of the Sun. However, local magnetic
fields are also important.p-modes are reported to be damped
when propagating through a sunspot (Braun et al. 1987, just to
name a widely studied example). The effect of a vertical
magnetic field on p-modes has been investigated analytically
by, e.g., Zhugzhda & Dzhalilov (1981, 1982), Spruit & Bogdan
(1992), Cally & Bogdan (1993), Cally et al. (1994), Hindman
et al. (1996), and Jain et al. (2009).

The theory of MHD waves and oscillations in stratified
medium, in which the magnetic field is parallel to gravity, has
also been developed by, e.g., Ferraro & Plumpton (1958),
Syrovatskii & Zhugzhda (1968), Hollweg (1979), Zhugzhda
(1979), Leroy & Schwartz (1982), Schwartz & Leroy (1982),
Zhugzhda & Dzhalilov (1984a), Moreno-Insertis & Spruit
(1989), Hasan & Christensen-Dalsgaard (1992), Cally (2001),
Roberts (2006), and recently by Mather & Erdélyi (2016).
Some of these works focused on the effect of a magnetic field
on convection, the unstable counterpart of buoyancy oscilla-
tions. One key result is that a sufficiently strong magnetic field
can inhibit convection, i.e., wave propagation may be possible
when the square of the Brunt—Viisélad frequency is negative.
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A horizontal magnetic field was analyzed in the Boussinesq
approximation by Barnes et al. (1998). It was shown that
propagating IGWs have a buoyancy and a magnetic component
in an MHD model. In the presence of a vertical magnetic field
the picture is less clear. The slow and fast MHD waves have
mixed properties and mode conversion can occur when the
sound and Alfvén speeds are equal. For a treatment of mode
conversion see, e.g., Zhugzhda & Dzhalilov (1982) and Cally
(2001, 2006). This phenomenon makes the mathematical
treatment of MHD waves in this model, i.e., with a vertical
equilibrium magnetic field, very difficult. The coupled second-
order governing equations were first derived by Ferraro &
Plumpton (1958). Exact solutions of this system, for the case of
a constant background temperature, were found by Zhugzhda
(1979) in terms of Meijer G-functions (or equivalently
hypergeometric functions, as shown by Cally 2001). Exact
solutions for more complicated background states are not yet
known. For large horizontal wavenumbers, the slow wave is, to
an extent, decoupled from the fast wave. The governing
equation for the slow wave when this is the case, derived by
Roberts (2006), is of Klein—~Gordon form. Solutions for an
isothermal background have been investigated by, e.g., Hasan
& Christensen-Dalsgaard (1992).

It is important to understand the wave processes in the solar
atmosphere. There is plenty of evidence that the solar
atmosphere contains structures that may be modeled as
stratified plasma embedded in vertical magnetic fields. MHD
waves in such structures (when stratification is along the
magnetic field) are difficult to analyze. To gain some under-
standing of the situation we focus on MHD waves that are more
applicable to the lower solar atmosphere, where buoyancy may
play a key role. The knowledge gained from such a model will
allow us to measure and explain dynamic processes in the solar
atmosphere.

It was shown by Straus et al. (2008) that IGWs are
suppressed by a strong magnetic field. In this work we shall
restrict our attention to a weak magnetic field to determine the
nature of IGWs in a magnetic environment. We aim to establish
how the properties (e.g., frequency) of IGWs are affected by
the presence of a magnetic field. In particular, we aim to gain
insight into how these changes (if any) scale with the magnetic
field. Knowing such scaling may ultimately allow us to develop
inversion techniques to determine the magnetic field present in
such waveguides.

To study IGWs analytically, we apply the Boussinesq
approximation. We first consider the purely hydrodynamic case
of no magnetic field. This approach is applicable to the lower
solar atmosphere in regions with very little magnetic activity.
We should note, however, that what may appear to be a field-
free region with some instruments may actually contain many
small-scale magnetic features. We examine both propagating
and standing waves. After considering the hydrodynamic
problem, we move onto the MHD case. We address IGWs
from the viewpoint of MHD waves and determine the
introduced changes in frequency due to the presence of a
vertical equilibrium magnetic field. A vertical magnetic field is
directly applicable to localized structuring phenomena such as
sunspots, pores, and coronal holes. It has also been shown by
Reardon et al. (2011) that chromospheric fibrils, previously
thought to predominantly be horizontal fields, instead have
much “more” vertical than horizontal magnetic flux; this is a
potential new application with the caveat that these features are
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rather dynamic (i.e., time-dependent), therefore caution has to
be exercised not to over-interpret.

The approximations used in this analysis lend themselves to
the lower solar atmosphere, specifically the photosphere or low
chromosphere (where the plasma-( could still be large in local
magnetic structures, even for strong magnetic fields). In this
region, we expect IGWSs to be generated by convective motion
and be influenced by the magnetic structures permeating the
solar atmosphere. The conditions of the solar chromosphere
may lead to some trapping of IGWs. A vertical magnetic field
may then be used to model the chromosphere. Paralleling the
case of a horizontal field, we shall see that under the
assumptions we make in this article, the oscillations considered
here are slow magnetoacoustic-gravity (MAG) waves.

2. A FIELD-FREE ATMOSPHERE

Let us consider the hydrodynamic case of no magnetic field,
applicable to the QS. We employ linear perturbations in a fluid
stratified by gravity. The spherical nature of the Sun is
neglected and we use a Cartesian coordinate system (x, y, z),
applicable to large horizontal wavenumbers, i.e., the [ of
perturbations in a spherical system is large (Pintér 1999).
Gravity acts in the negative z-direction, g = (0, 0, —g). The
background density and pressure depend on height only,
Do = Py (@), py = py(z). There are no background flows,
vo = 0. The background state is in hydrostatic equilibrium,

dpy

Lo _ g 1
i 8P (D

and satisfies the equation of state,
k
po = = poTo, @)
m

where kg is Boltzmann’s constant, 7, is the background
temperature, and 7 is the mean particle mass. Around this
static background we take small (i.e., linear), adiabatic,
perturbations of the governing equations.

To study IGWs, uncoupled from sound waves, we apply a
Boussinesq-type approximation. Essentially, perturbations to
the density are significant only when multiplied by the
acceleration due to gravity g, i.e., when a buoyancy force is
acting. In the Boussinesq-type approximation, the linearized
governing equations (where we also apply the Cowling
approximation) are

V - (pov) =0, 3)
81’1
— =-Vp, + R 4
Pos, P+ g 4)
dp, N?
— T — > 5
or 2 PoV1z (5)

where N is the Brunt—Viiséld frequency defined by
1 d
P@ . g )

3 ©6)

N2 =N()? = —
© g[ﬂo () dz c;

where ¢, is the (adiabatic) sound speed given by
2= Po (z)/ Po(2), and +y is the ratio of specific heats.
Equation (5) represents the excess density of a fluid particle
over its background as it is displaced vertically from
equilibrium (in a stratified fluid). Note that some works use
the term Boussinesq approximation to mean a solenoidal
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velocity field (V - v; = 0), applicable to a medium where the
density may be considered constant, however, we follow
Lighthill (1978). This is sometimes referred to as the anelastic
approximation. This approximation is more suited to the solar
atmosphere, where the density may vary significantly.

The Boussinesq approximation may be used to study
buoyancy-driven waves when the wavenumber of the perturba-
tions is large compared to both N2/g and g/c?, see, e.g.,
Lighthill (1978). Note that

2
LAY S _Ldpy

(N
g < po dz

The terms neglected from the governing equations in the
Boussinesq approximation relate to the compressibility of the
plasma and contribute to the generation of acoustic waves. In
applying the Boussinesq approximation, we are therefore
making an assumption based on the wavelength of the waves
rather than the state of the medium. For more on the
applicability of the Boussinesq approximation, see, e.g.,
Spiegel & Veronis (1960).

We may form a single equation from Equations (3) to (5), in
terms of the vertical component of momentum g = p,vy;, by
taking the y-component of the curl of Equation (4) and
eliminating vy, and p,,

2% _ 0%

v o asz q. ®)
Note that we assume no y-dependence, without loss of
generality, as there is no preferred horizontal direction.
Equation (8) is the governing equation for IGWs in the
Boussinesq approximation. In deriving Equation (8), the y-
component of the vorticity equation was employed, and the x-
and z-components do not correspond to interesting physics in
the present context.

We may assume normal modes in Equation (8), that is,
assume ¢ is proportional to exp (ik,x — iwt). The governing
equation then takes the form

d2q ) N2
— =kl - —|q. 9
42 )4 €))
We shall investigate Equation (9) in the context of both
propagating and standing waves.

2.1. Propagating Waves

Assuming that the equilibrium quantities p, and p, change
slowly with height, we can apply the WKB method (see, e.g.,
Bender & Orszag 1978) to obtain a local dispersion relation.
First, we introduce a slowly varying spatial variable 7 = ez,
where € < 1, and assume ¢ takes the form

g= w<2)exp(;¥9<z>). (10)

Substituting Equation (10) into (9) and keeping the leading
order terms (i.e., terms order O(¢°)) we are left with

2 5 )
[(d_?) + kf(l - N—z)]w(Z)exp(iQ(Z)) =0. (1D
dz w €
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Noting that the local vertical wavenumber is given by
k, = df/dz, we find the local dispersion relation

k2
w? = ———N? (12)
ki + kZ

This is the well-known dispersion relation for IGWs (Light-
hill 1978). The Brunt—Viisild frequency is then the upper
cutoff frequency of IGWs. When k, is large in comparison to
k., w? ~ N?2. This agrees with the result that a plasma element
displaced vertically from equilibrium will be restored by
buoyancy and undergo simple harmonic motion at the Brunt—
Viisild frequency.

2.2. Standing Waves

The Brunt—Viisild frequency changes significantly through-
out the solar chromosphere (see e.g., Newington & Cally 2010).
This may cause the trapping of IGWs in the solar photosphere,
leading to a cavity in which standing modes may form. We
should therefore not restrict ourselves to propagating modes
only and consider these standing modes. Furthermore, standing
modes are excellent tools for carrying out solar magneto-
seismology. Deriving diagnostic information from inverting
changes, e.g., in the frequency or node/anti-node positions
caused by inhomogeneity, structuring, or even time-depend-
ence of the waveguide, are popular applications in solar
physics. Although there is an extensive literature detailing how
to make such applications by means of MHD waves (e.g., slow
sausage, fast kink, or even Alfvén), there is limited work on
IGWs in this context.

We now consider standing waves and thus must solve (9)
with appropriate boundary conditions. Standing waves may
occur in the solar atmosphere due to turning points or reflection
by, e.g., a sharp change in phase speeds caused e.g., by sharp
changes in, for example, temperature. Let L be the length of the
cavity, z € [-L,0]. Let us consider the case that the
background temperature varies linearly with z,

T = To(l - i) (13)

20

where T is the temperature at z = 0 and zo (>0) is the
temperature scale height. The temperature, pressure, and
density are related by the equation of state, Equation (2).
Using Equation (13) together with Equations (1) and (2) has the
consequence that the density and pressure profiles are given by

m m+1
po(2) = ﬁo(l - i) s (@) ﬁo(l - i) , (14)
20 20

where p, and p, are positive constants and represent density
and pressure in the limit z — 0, and m is a constant known as
the polytropic index. Equation (1) implies that
m = zogy/c?(0) — 1. We note that pressure and density are
related by

po = Kpy™'/", (15)

where K is constant, which may be determined using
Equation (1). Applying the polytropic model, the Brunt—
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Viisild frequency is given by

—1
N2 = Noz(l - i) :
20

where N02 is constant (note that NO2 can be negative). We also
note that we consider a non-adiabatic polytrope, that is,
v=1+ 1/m. We study a system where the effect of
buoyancy is significant, so the medium is not neutrally stable.
The Schwarzschild criterion for convective stability (Light-
hill 1978) implies that m > 3/2 when v = 5/3.

Exact solutions to the governing Equation (9) are available
in terms of Whittaker functions. It is instructive, however, to
consider the case of slowly varying temperature (which has
applications to the solar atmosphere and the magnetohydro-
dynamic case considered later), that is, we assume L < z,. Let
7z = Lz*, z¥€[—1, 0], then the Brunt-Viisild frequency can be
written

m
W=gp——%} (16)
<0 G50

1 *
N2 = 1\/0(1Li) ~N§(1+Li)as£<<1. (17)
20 20 20

Returning to the dimensional variable z, Equation (9) with the
Brunt—Viisild given by Equation (17) leads us to

2 N,
d—;’ = k,?( - —0(1 + ))q (18)
dZ w 20

Equation (18) has solutions of the form
qg = GAi(©) + G,Bi(0), (19)

where Ai and Bi are the linearly independent Airy functions
(see Abramowitz & Stegun 1972) and

1 k2N
No

0= ] (N§ (z + 20) — w20). (20)

We have solved the governing equation for g, that is, the
amplitude of the waves. Let us now apply appropriate
boundary conditions to determine the eigenfrequencies of the
perturbations. We are considering standing waves in a cavity of
length L. The boundaries are fixed and perfectly reflecting. The
boundary conditions for such a layer are

vi:(0) = v, (L) = 0. 21)

Applying these boundary conditions to solution (19), we
may find the dispersion relation

Ai(©g)Bi(O.1) — Ai(O_1)Bi(Op) = 0, (22)

where ©p, ©_; denote © (Equation (20)) evaluated at
z = 0, —L, respectively. This equation cannot be inverted for
the eigenfrequencies without some further simplifications. The
Boussinesq approximation is valid for large wavenumbers,
hence we assume k to be large, i.e., k,zo> 1. This
approximation is also very useful in the magnetic case. The
wavenumber appears in © of order (kxzo)%, i.e., O is large. An
asymptotic expansion is therefore possible if &,z is sufficiently
large. Let us make use of the asymptotic properties of the Airy
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functions (Abramowitz & Stegun 1972),

Ai(—z) ~ 374 sin(( + %)

Bi(—z) ~ 7z + COS(C + %) 7 — 0, (23)
where
¢=22, and l|agzl < 2. 24)
3 3
Letting
1 k Ny N
[ ) (NG (z + z0) — wko) = =6,  (25)
No

we may write Equation (22) as
A—Lt~u—1
710, O_ z[s (Co )cos(( + 4)

—sin|(_, + %)cos((o + %)]

& i sin(¢y — ¢ ) =0, (26)

=T 1@0

where

o)W

2 ~o
= Z0°. 27
¢ 3 27)

Equation (26) implies

1
21 ( k2 ) ) 3
— = —— 2 N¢ — wh))2
Co QL 3N02(wzzo) [(Zo( 0 w))

3
2
- (N&z()(l + 5) - wzzo) = nm. (28)
20

Making use of the fact that L/zo < 1, we may Taylor-expand
Equation (28) around L/zy = 0. Retaining the first term in
L/ 7z, the dispersion relation becomes

W N2 (29)

L2
A comparison to the local dispersion relation shows that the
term nm/L acts as a vertical “wavenumber.” Equation (29)
possesses the familiar anti-Sturmian behavior of IGWs, that is,
the eigenfrequencies decrease as n increases. Equation (29) is
convenient for estimating the eigenfrequencies, as it allows us
to use the Brunt—Viisild frequency evaluated at the top of the
cavity. This is to be expected by the assumption of a slowly
varying medium; this analysis, however, serves as justification.
We also consider the case of constant sound speed
(isothermal background temperature). It can be shown (details
omitted) that the exact expression for the eigenfrequencies is

[ — (30)
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Figure 1. Plot of  frequencies 41), where Ny = 0.03

s7L, ¢ =8kms !, (B =50. The solid line represents k, = 10 km’l, the

dashed line represents k. = 50 km™', and the dot—dashed line represents
k. = 100 km ™", The horizontal dotted line is the Brunt—Viisili frequency No.

as expected. It is simple to show that N7 = N2 — g/z, hence
the eigenfrequencies are lower for the polytropic case than the
isothermal case. That is, the effect of variable temperature is to
decrease the frequency of IGWs. This feature could be rather
relevant for observational validation.

We have determined the frequencies of propagating and
standing IGWSs using the Boussinesq approximation. Magnetic
fields are ubiquitous through the solar atmosphere, as argued
before, so we must now take into account their role in the
dynamic processes at work as a next step. In the following
section, we consider the plasma to be embedded in a vertical
magnetic field.

3. A MAGNETIC ATMOSPHERE

Let us now consider magnetohydrodynamic wave propaga-
tion, applicable to magnetically active localized regions such as
pores and sunspots. It has already been observed that strong
magnetic fields inhibit the propagation of IGWs (Straus
et al. 2008). We expect, however, that the weak magnetic
fields found in the solar photosphere will also have some effect
on IGWs. In particular, we aim to establish whether the
frequencies of IGWs, present in a plasma embedded in a
magnetic field, are effected. The magnetic field is vertical and
uniform, By = (0, 0, By). The linearized ideal MHD governing
equations, in the Cowhng approximation, can be reduced to

0? PRYES
=+ i =|s - 3—)—1, 31
VAa 2)5)( (g G, aZ Ox ( )

g B2
(w 875, TG 52 E=180y—D caZ n (32)

(w + (c + vA)

(w +vA )g = 0. (33)

where € = (§,, §,, £) is the Lagrangian displacement vector
and vi is the square of the Alfvén speed defined by
vi =B} / 1py. We note there is no preferred direction in x or
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¥ so we may assume that, without loss of generality, there is no
y-dependence. If we assume plane waves in the horizontal
direction, neglecting y-dependence is equivalent to rotating the
coordinate system such that the wavevector is aligned with the
x-axis. These equations were first derived by Ferraro &
Plumpton (1958) and have been widely applied. Equations (31)
and (32) govern the fast and slow MAG waves, which couple
together in this model. Equation (33) shows that the Alfvén
wave, driven purely by magnetic tension, is decoupled from the
system.

In this article we are primarily interested in buoyancy-driven
motion and hence we neglect the effect of mode coupling as a
first simplification. Our goal here is to derive analytical
solutions to the governing equations, which may be used when
buoyancy is the primary restoring force, i.e., in the case of
atmospheric g-modes. This motivates a different approach to
the analysis than works focusing on mode conversion, e.g.,
Spruit & Bogdan (1992) and Cally & Bogdan (1993). Here, we
derive the governing equation for buoyancy-driven motion
where the stratified plasma is embedded in a uniform vertical
magnetic field.

Instead of using the full governing equations we may now
derive a governing equation, again, in the Boussinesq
approximation. The linearized equations are

V - (pyr1) =0, 34
dp, N?
_— — V7’ 35
ot g Povz (33)
BoB By OB
8!}1:_Vpl_V LR g-l——ob (36)
O ot i w0z
B g By, V.B =0 (37)
ot 0z

We may write a single equation for the z-component of
perturbed momentum, ¢, via the y-component of the curl of
Equation (36),

o(10q) o 2
IV — —N?¥q - —V?’q=0. 38
POAY o2 ( po 0z ) a2 1T %)

This is the governing equation for MHD perturbations in the
Boussinesq approximation. The Boussinesq approximation has
been applied to a vertical magnetic field by, e.g., McKenzie &
Axford (2000), who derived a simplified form of Equation (38).
We may now Fourier analyze Equation (38) in x and ¢,

d(1d d? d(1d
POVA—— [ q) + w? Z poVaky — [ q)
dz?\ p, dz dz dz\ py dz
+ k2(N? — w?q = 0. (39)

There is also another wave solution of Equations (34)—(37)—
the Alfvén wave. This corresponds to the x- and z-component
of the curl of the momentum equation. The governing equation
for Alfvén waves is

”? 5,0
(@‘ a_) -0 40

This equation is, as mentioned earlier, decoupled from
Equation (39), hence in a vertical field the Alfvén wave does
not couple to IGWs. This was not considered by McKenzie &
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Axford (2000) due to a cumbersome mathematical treatment of
Equations (34)—(37). We find that Equation (39) is not easy to
solve analytically. We will now analyze Equation (39), via the
WKB method, to study propagating waves.

3.1. Propagating Waves

For propagating waves we may perform a WKB analysis, as
in the previous section, of Equation (39) to find the local
dispersion relation

2
K e

2 _ 272
w _VAkZ+k3+kZ2

(41)

The frequencies are plotted in Figure 1. We see that even for
the case of a weak magnetic field, significant differences from
the Brunt—Viisidld frequency are seen. The character of the
solution may easily become magnetically dominated, the waves
may therefore become high-frequency as opposed to low-
frequency IGWs (although this is based on the specific values
that the parameters take). The waves may be described then as
slow MHD waves modified by gravity. In Figure 1 we see that
the frequencies increase as k, increases, in contrast to the non-
magnetic case. It should be noted that this is not true in general,
as

2 2
o™ _ 2 _ _z_ﬁLE_ZNZ, 42)
(ky + k)

which may be positive or negative. The local dispersion
relation for Alfvén waves, found by a WKB analysis of
Equation (40), is

w? = vikZ. (43)

The first term in Equation (41) resembles the solution of an
Alfvén wave and has lead to some authors labeling this wave as
an Alfvén wave modified by gravity. This is not the case, as we
have seen that the equation describing Alfvén waves is
decoupled from the system of equations describing the wave
given by the dispersion relation (41). This clarity owes to the
elegance of using the components of the vorticity equation to
derive the governing equations. To deduce what this wave is, in
terms of the MHD spectrum, we note that the Boussinesq
approximation is quasi-incompressible, i.e., sound waves
propagate at infinite phase speed. In a magnetic configuration,
this corresponds to the plasma-( being large, where the plasma-
(3 is defined by § = y¢2/2vi. The slow MHD mode, in the
large horizontal wavenumber limit, propagates along the
magnetic field lines with the phase speed ¢, where
cf = c2vi/(c2 + v3). In high-3 plasma, ¢ ~ v, hence the
first term in Equation (41) corresponds to a slow MHD mode
propagating along the magnetic field lines. The absence of the
fast MHD mode is due to the Boussinesq approximation, which
corresponds to the phase speed of the fast wave tending toward
infinity.

The implicit assumption of high-/3 plasma means that these
results may be applied to regions of the Sun such as the upper
interior or lower solar atmosphere, say the photosphere or low
chromosphere. In the higher atmosphere, i.e., the solar corona,
and in very strong magnetic structures in the lower atmosphere
(low-/3 structures) the Boussinesq approximation, and thus the
previous result, are less applicable.
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Table 1
The Frequency, Given by Equation (41), at the Base of the Photosphere
By (G)
k, (km™ ") 0 1 10 100
0.1 4.19 4.19 4.28 9.56
1 4.19 4.28 9.56 68.1
10 4.19 9.56 86.1 860

Note. The horizontal wavenumber is 1 Mm ™.

Table 2
The Same as Table 1, but Evaluated at the Top of the Photosphere
By (G)
k, (km™") 0 1 10 100
0.1 5.31 5.31 8.33 64.3
1 5.31 8.33 64.3 641
10 5.31 64.3 641 6410

We have helped to clear up the picture of IGWs in an MHD
setting. It is well-known that when the magnetic field is
horizontal, the IGWs of hydrodynamics correspond to slow
MHD waves. We have shown that this is also the case for a
vertical magnetic field where some previous authors have
mistakenly identified IGWs with Alfvén waves. This is
important to recognize, as Alfvén and slow waves are
orthogonal eigenmodes of the MHD differential operator and
hence are different and independent (in linear approximation).
To gain a deeper understanding of system we should
acknowledge the completeness of the spectrum of eigenmodes.
Furthermore, it is important to recognize the difference
between the waves because they have different properties,
including phase speed, group speed, polarization, capability
and capacity to carry energy, capability to dissipate, etc. A key
difference in terms of energy transportation is that Alfvén
waves carry energy along magnetic field lines, while slow
MHD waves may carry energy at an angle to the field lines.
Note also the well-known property of IGWs in which the
vertical components of the phase and group velocities have
opposing signs; this property may or may not persist depending
on the dominant character of the waves. It is simple to show
this property via the vertical component of the group velocity,
calculated from Equation (41). In the solar atmosphere, where
the magnetic field is highly structured, these properties should
be taken into account.

We expect to observe the waves in the lower solar
atmosphere, e.g., the photosphere. In this region even plasma
embedded in a strong magnetic field may be considered to be in
the high-( regime. In Tables 1 and 2 we give the frequency (in
mHz), determined by Equation (41), for a realistic solar
atmosphere (the VAL-C model, Vernazza et al. 1981). For
simplicity, we use the expression for the Brunt—Viisald
frequency in an isothermal atmosphere N2 = g2(y — 1)/c2.
Table 1 corresponds to the base of the photosphere (z ~ 0 km
in the VAL-C model), where the plasma is such that the sound
speed is ¢; ~ 8.5kms~!. Table 2 expresses the frequencies at
the top of the photosphere (z ~ 500km), where
¢~ 6.7kms™'. Many of these frequencies are well within
current instrumental capabilities. The frequency is highly
dependent on the vertical wavenumber; simulation or observa-
tional data is needed to determine the typical vertical
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wavelengths of magnetic IGWs in a realistic solar atmosphere.
Note that the horizontal wavenumber is taken to be 2 Mm ™',
satisfying the large wavenumber criteria of the Boussinesq
approximation.

Equation (41) predicts the frequencies that we expect to
observe. The waves we discuss are quasi-incompressible, so
intensity variations are unlikely to be of use as an identifying
tool. Doppler velocities and Stokes parameters are probably the
key to observing these waves. Straus et al. (2008) were able to
identify IGWs in the lower solar atmosphere using line of sight
Doppler velocities. These were seen using lower solar atmo-
spheric lines (Fe 17090, Na1 D1, Mg b,, Nil 6764 lines) using
the Interferometric Bidimensional Spectropolarimeter and
Echelle spectrograph instruments at the Dunn Solar Telescope
and the Michelson Doppler Imager (MDI) on board the Solar
and Heliospheric Observatory (SOHO) spacecraft. In the
hydrodynamic regime we expect a similar analysis to observe
the waves. In the magnetic regime, this may not be applicable,
as periods may be too low, although this is based on the vertical
wavelength. We would suggest that a super-sensitive MDI type
of instrument could pick up such signals, or using magneto-
optical filters at various heights (e.g., Na D2 or the K lines,
through the Cal line could also be used).

There remains the question of how to distinguish magnetic
IGWs from other wave modes. There should be no confusion
with acoustic or fast MHD waves, as the frequency and phase
speed of such waves should be significantly different. The
frequency of the magnetic IGWs (slow MHD waves) that we
discuss is determined by the Alfvén frequency and the Brunt—
Viisdla frequency, which are significantly less than the
frequency of fast or p-modes in high-3 plasma (where our
results are applied, this region is the lower part of the solar
atmosphere, i.e., the photosphere embedded in a magnetic
field). The distinction between the magnetic IGW the Alfvén
wave, may be more difficult based on instrumental capabilities
but in principle is possible. The frequency of magnetic IGWs,
as we have determined, is greater than the Alfvén frequency.
When the magnetic field has a less determining effect, the
waves may be observed as almost pure IGWs (as in Straus
et al. 2008), and the magnetic effect is seen by e.g., the
deviation from the frequency of IGWs. Such deviations could
be observed in Dopplergrams, which are known in helioseis-
mology. Unfortunately, even a weak magnetic field may cause
the frequencies to become very close to the frequency of
Alfvén waves. The frequency is not exactly the same, although
the difference may be challenging to observe. A more
significant difference may be observed in the phase and group
velocities, expressions for which may be determined from
Equation (41) with ease. When the waves take on a magnetic
character, the distinction between Alfvén waves is in the
velocity perturbations relative to the magnetic field. If one can
determine the magnetic surfaces, the slow MHD waves may
have velocities that are both parallel (the dominant component)
and perpendicular to the magnetic field, while Alfvén waves
may have velocities that are only perpendicular, within constant
magnetic surfaces. In Alfvén waves the perturbations are to the
magnetic and velocity field components, so they would be out
of phase. Observationally it is not easy to establish what the
magnetic iso-surfaces are, but using, for example, Local
Correlation Tracking, it is possible.

In this section we have confirmed that IGWs in a slowly
varying medium embedded in a weak, vertical magnetic field
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are slow MHD waves. The frequencies of the oscillations are
modified by a term corresponding to a slow MHD wave. In the
next section we will show that this is also the case for standing
waves.

3.2. Standing Waves

It has been shown by Newington & Cally (2010) that a
weak, vertical magnetic field has the potential to reflect upward
propagating IGWs. This typically occurs below the region
where the sound and Alfvén speeds are comparable. This fact,
in addition to temperature variations in the low solar
atmosphere may create some cavity in the photosphere/
chromosphere where IGWs are trapped, leading to standing
modes in the high-5 medium.

To analyze buoyancy-driven MHD standing waves, we find
it preferable to further simplify Equations (31) and (32) via the
method of coordinate stretching (see, e.g., Roberts 2006),
which we briefly outline here for reference. We take this
approach, as the governing equation in the Boussinesq
approximation is still difficult to analyze analytically. This
method is equivalent to assuming small horizontal wavelength,
so some analogy with the Boussinesq approximation may be
drawn.

We are interested in vertical, buoyancy-driven motion, i.e.,
we wish to consider motion that is predominantly along the
magnetic field lines. We apply the method of Roberts (2006),
used to study slow MAG, which we briefly outline here (see
Roberts 2006 for details). Let us introduce the scaling

&=¢. (44)

where € is dimensionless and small, i.e., € < 1. Substituting the
scaled variables into Equations (31) and (32) Ileaves
Equation (32) unchanged but (31) becomes

2¢& 2 _ 6_
@+ DL ¢ 62(w2 + via—)ﬁx = (g - czi)i

x=e, & =€, z=1,

ox? 0z toz)ox
(45)
Since € < 1, the term O(e?) can be neglected so
0%, 9 ) 9,
¢l + i L= ( - CSZ—)—Z. 46
¢ i U 0z ) ox “0)
Equation (46) can be integrated with respect to X,
o€, 0 )~
cz—l—vz—x:( —cz—) . 47
(¢ + ) e 8§~ G5 3 (47

Let us now return to the original, unscaled variables.
Elimination of 9¢,/0x between Equations (32) and (47) leads
us to

92 49 2 2
AT 4 (aﬂ - —(N + ﬁc—T)]fz =0,

2 4 2
0z ¢ Oz VA H

(48)

where H = ¢?/g is the pressure scale height. Equation (48) is
the governing equation for MHD buoyancy oscillations. This is
the governing equation we shall use to investigate the slow
MAG wave.

Note that if the magnetic field is absent from the model,
va = 0, we have the dispersion relation w?> = N2. This is the
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well-known dispersion relation for a fluid particle (displaced
vertically from equilibrium) undergoing either simple harmonic
motion due to buoyancy, or convection in the case of complex
w. This is the dispersion relation for IGWs in the limit of large
horizontal wavenumber.

Equation (48) is Equation (3.9) of Roberts (2006). This
equation has also been derived previously by e.g., Moreno-
Insertis & Spruit (1989) in the context of modeling convective
motion in sunspots; and it was also applied by, e.g., Hasan &
Christensen-Dalsgaard (1992) to study MHD waves in a high-(3
approximation in an isothermal atmosphere.

The scalings (44) are equivalent to assuming that the
horizontal wavelength of the perturbations is small, i.e., taking
the asymptotic limit k, H — oo. We can relate the horizontal
wavenumber k, to the azimuthal order / of spherical harmonics
(for standing waves of the entire Sun); the assumption of large
wavenumber implies that [ is large, that is, the analysis
performed here is applicable to waves trapped close to the solar
surface. Large values of [ also agree with the use of Cartesian
coordinates.

Let us consider a temperature profile that increases linearly
with depth, given by Equation (13). The density and pressure
are given by Equation (14). The squares of the sound and
Alfvén speeds take the form

2 = 63(1 - i), V= ﬁf\(l - i) , (49)

where &2 and 73, the values of sound and Alfvén speeds

squared at z = 0, are constants. The Brunt—Viisild frequency
is as in the hydrodynamic case, given by Equation (16).

A polytropic model has been considered before by, e.g.,
Syrovatskii & Zhugzhda (1968), Scheuer & Thomas (1981),
Spruit & Bogdan (1992), Cally & Bogdan (1993), Cally et al.
(1994), and Hindman et al. (1996), although it has not been
studied as extensively as an isothermal model. Many of the
previous works have been motivated by oscillations in sunspots
and the mode conversion of magnetically modified p-modes
(fast MHD modes) into slow MHD modes.

Let us now make the assumption of high-3 plasma, in
accordance with the Boussinesq approximation. A high value

of 3 (i.e., a weak magnetic field) implies v; < ¢ 50 ¢f ~ vi.
Under this assumption Equation (48) becomes
02%¢,
VA i + (W? — NH)E, = 0. (50)
0z

This is a Sturm-Liouville type problem, in contrast to the anti-
Sturmian hydrodynamic case. The Brunt—Viisild frequency
now plays the role of the lower cutoff frequency, that is, there
is only wave propagation if w? > N2. If N2 > w? the waves
are evanescent.

Now, substituting the expressions (49) and (16) for v and
N? into (50), we obtain the governing equation for longitudinal
MHD wave propagation in a polytropic high-3 plasma

2 m m—1
. (B et

Z 20 20

To solve Equation (51) analytically one needs to make further
simplification. We reduce the complexity of Equation (51)
when the temperature varies slowly throughout the medium. In
this approximation we find that the resulting governing
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equation can be solved analytically, in terms of special
functions.

Here, we consider standing waves in a cavity of thickness L,
ie., z € [—L, 0]. Now, we assume that the thickness of the
cavity is much smaller than the temperature scale height,
L < zq (i.e., the temperature changes slowly throughout the
cavity). This assumption is relevant for a thin layer close to the
solar surface, and thus complements the scaling (44) when
deriving the governing equation. If we again introduce a new
variable, z*, such that z = Lz* where z*€[—1, 0], we Taylor-
expand the above equation for small L/zg, as L/zo < 1 by
assumption. To first order in L/zq this is

5 7%
12 9722
Z¥L
+ [(w2 — N§) — (w?m — Nj (m — 1))—]5z = 0.
20

(52)

Returning to the dimensional variable z in favor of 7%, the
solution is, again, given by Airy functions

£, = GWAI(Q) + G;(x)Bi(Q), (53)

where

1/3
Q0= (AZI ) (Ng (m — 1) — mw?) 23 [w?(mz — z0)
VaZo
+ N} (zo + z(1 — m))].
(54)

It can be shown that the solutions are spatially oscillatory for
z€[—L,0]if w? > N§ and m > 1.

We now consider standing waves in a cavity of length L. We
assume the boundaries of the cavity to be perfectly reflecting.
As in the hydrodynamic case, reflection can occur due to an
abrupt change in the background; see, e.g., Scheuer & Thomas
(1981). Slow waves may also be reflected in a region where the
Alfvén and sound speeds are equal, due to mode conversion
(Zhugzhda & Dzhalilov 1984b). As mentioned in the previous
section, this work is restricted to the case of a weak magnetic
field, hence there is no region in which mode conversion can
occur.

We are considering a standing wave problem in a finite
cavity with reflecting boundaries. The desired dispersion
relation

Ai(Q-1)Bi(Qo) — Ai(Qo)Bi(Q-1) = 0, (55)

where Qg and Q_; are Q|,—¢ and Q|,— .

This equation is highly transcendental and cannot be solved
easily for w, which appears implicitly in Qy, Q_ ;. We can
probe some information by noting that the parameter z, is large
in comparison to L, i.e., the medium has slow temperature
variation. Using the variable z*, defined earlier, we note that Q
is of the order of (z()/L)§ in the large parameter zo/L. An
asymptotic expansion around large Q is therefore possible.
Letting

Q=-00 Q.=-04, (56)

where, for spatially oscillating solutions, ao, Q_L > 0. The
asymptotic expansions (23) allow Equation (55) to be rewritten
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Figure 2. Plot of frequencies (60) where L = 500km, Ny, = 0.03
s, & =8kms~!. The solid line represents (3 = 50, the dashed line
represents 5 = 100, and the dotted line represents 5 = 1000.

as
7T1§01/4§_L1/4(sin(Co n E)COS (LL + 1)
4 4
. T T
- sm(C,L + Z) cos (Co + Z))
~—1/4~v—1/4
=710, " 0, sin(¢— ¢ ) =0, (57)
where
2 ~3/2 2 ~3/2
Co = EQO > QL = EQ—L . (58)

Equation (57) implies

1/2
3[ ! ) 2PN — 1) — mu) 1 [(W2 — NEY2

=2
3\ Vazo

3/2
— (w2(1 + m£) — Noz(l —_— m)i)) ]
20 20

=nm.

(59)

This is an algebraic equation in w, although it still cannot be
solved exactly analytically. We can, however, solve
Equation (59) if we Taylor-expand around the small parameter
L/zo. We retain only the first term in L/zy. The frequencies can
then be expressed as

2,252
2:n7TVA

whe st N§. (60)
These are asymptotic approximations of the eigenfrequencies
of the interior. Equation (60) is useful for estimating the
frequencies, as it used only the values of v5 and N evaluated at
z = 0. The frequency consists of a magnetic contribution
modifying the Brunt-Viisild frequency. Based on photo-
spheric measurements of the Brunt—Viisild frequency (Komm

etal. 1991), the frequencies are small for small n. Figure 2 plots
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values of w against n for typical photospheric parameters. The
sound speed, at z = 0, is taken to be 8 km sfl, and L = 500
km, corresponding to a relatively thin layer in the upper
interior /photosphere.

Figure 2 shows that higher values of  (a smaller Alfvén
speed for fixed sound speed) return lower frequencies, as
expected due to the lower phase speed of the wave. For small n
the character is that of an IGW, as the magnetic field is weak by
assumption. When 7 increases sufficiently the Brunt—Viisila is
negligible; the curve of w against n behaves linearly. This
represents the magnetic restoring forces dominating the
gravitational one. Note the Sturmian behavior of slow MAG
in contrast to the anti-Sturmian behavior of non-magn-
etic IGWs.

Note that for the case of an isothermal, high-( plasma, Hasan
& Christensen-Dalsgaard (1992) solved Equation (50) in terms
of Bessel functions. A dispersion relation for standing waves
may be inverted by assuming the frequencies are large
compared to some parameter. When the medium is assumed
to vary slowly, the square of the eigenvalues of the isothermal
medium may be expressed in the same form as Equation (60).
A comparison of this analysis to the isothermal case shows that
a slowly varying temperature does not change the form of the
equation for frequency. This is not a surprising result, but it can
now be applied with confidence. The polytropic Brunt—V4iiséld
frequency N, is smaller than the isothermal Brunt—Vdiiséld
frequency, and the frequency of the magnetically modified
IGW is then decreased by the changing temperature as in the
non-magnetic case. We have determined the eigenfrequencies
of buoyancy-driven oscillations for the case of slowly varying
temperature. This way we provide a theoretical underpinning
for small-scale waves in the solar atmosphere.

For the case of a constant temperature, the effect of zero-
gradient boundary conditions was analyzed by Banerjee et al.
(1995). The analysis was carried out using a perturbation series
approach based on the exact solutions derived by Zhugzhda
(1979). It was shown that there exists a mode referred to as the
gravitationally modified Lamb mode. The zero velocity
gradient boundary conditions imply anti-nodes at the ends of
the cavity. The modes are standing waves, as in the rigid wall
boundary conditions. Let us apply zero velocity gradient
boundary conditions to our polytropic model.

We apply zero velocity gradient to each boundary, v/ = 0 at
z = —L, 0. The resulting dispersion relation is

Ai'(Qo)Bi'(Q-1) — AI'(Q-1)Bi'(Qo) = 0. (61)

A similar analysis as in the case of rigid boundary conditions
lets us find the approximate eigenfrequencies

2,252
WP ’“Z—;A + NA (62)
This is exactly the same as the rigid boundaries, so the change
in boundary conditions has no effect on the frequencies. The
Lamb mode as described by Hasan & Christensen-Dalsgaard
(1992) and Banerjee et al. (1995) is a limiting form of a sound
wave and is not present in our analysis due to the “removal” of
compressive effects.

Let us consider the case of an open boundary and a closed
boundary. We choose the closed boundary to be the lower
boundary and the open boundary to be the upper boundary,
v,=0atz=—L,v =0 at z= 0. Applying these boundary
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conditions gives us

Ai(Q-1)Bi'(Qo) — Bi(Q-1)Ai'(Qo) = 0. (63)
Hence, the eigenfrequencies are approximated as
PAm2(2n — 1)?
GaNg ATCZ DT s (64

412

These are the analytical expressions for the frequencies for the
case of mixed boundary conditions. A comparison to the case
of rigid boundary conditions shows that the effect of letting one
boundary be open is the same as the case of an oscillating taut
string. There is a node at the lower boundary and an anti-node
at the upper boundary, hence the cavity allows odd multiples of
half a wavelength. It can be shown that inverting the cavity so
that the bottom boundary is open and the upper boundary is
closed does not change the frequencies despite the temperature
asymmetry.

4. DISCUSSION AND CONCLUSIONS

In this article we have analyzed buoyancy oscillations, which
may be considered to be slow MHD waves propagating along
the magnetic field lines. We are motivated by contributing to
the theory of determining global oscillations present in the solar
atmosphere. There is growing evidence that oscillations from
the solar interior penetrated deeply into the solar atmosphere.
Good examples of such penetration are the reports of 5S-minute
oscillations in the lower solar atmosphere by e.g., Didkovsky
et al. (2011, 2013), and Ireland et al. (2015). Here, we address
perturbations, taking into account the role of gravity. We focus
on buoyancy-driven magnetohydrodynamic waves. The full
coupled governing equations for MHD perturbations can be
shown to have exact solutions when the temperature is constant
(Zhugzhda 1979, see also Cally 2001; Mather & Erdélyi 2016).
For more complicated (and realistic) density profiles, to the best
of our knowledge, the governing equations cannot be solved
exactly. We find that we are able to solve the resulting
governing equation under certain simplifying assumptions that
are applicable to solar atmospheric conditions.

Here, we have used the Boussinesq approximation to study
hydrodynamic IGWs and derived the analogous governing
equation for the case of a vertical magnetic field. Our aim was
to determine the modification by the magnetic field, applicable
to magnetic structures in the lower solar atmosphere. First, we
analyzed propagating waves using the WKB approximation,
similar to the case of a horizontal field studied by Barnes et al.
(1998). A comparison between the hydrodynamic and MHD
cases shows that the magnetic contribution to the frequency is a
term corresponding to a slow MHD wave. This term is similar
to the frequency of an Alfvén wave, which has previously led
some to believe that, in this model, Alfvén waves modified by
gravity correspond to an IGW in a non-magnetic model. We
have now shown that this is not the case. The Boussinesq
approximation is applicable to high-4 plasma, and thus the
lower solar atmosphere, in which the slow wave propagating
along the magnetic field lines has a frequency comparable to an
Alfvén wave, but the wave solution itself is not an
Alfvén wave.

In this article we studied the effect of a variable temperature
profile. Hasan & Christensen-Dalsgaard (1992) analyzed the
frequencies of standing wave modes in an isothermal plasma in
a vertical magnetic field based on the exact solution of
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Zhugzhda (1979). The frequency shifts of solutions to a
simplified dispersion relation due to coupling with the other
modes are calculated. This analysis requires an in-depth
mathematical treatment. In this work, the case of a large
horizontal wavenumber was considered. Roberts (2006) found
that for predominantly vertical motion, i.e., large horizontal
wavenumbers, the slow wave is governed by a Klein—Gordon
equation. This is a much simpler equation to analyze than the
coupled second-order equations obtained by Ferraro &
Plumpton (1958).

We considered the case of standing waves using the method
of Roberts (2006). This method is similar to the Boussinesq
approximation in that it assumes large wavenumbers. Applying
the high-3 approximation we may study standing IGWs. Hasan
& Christensen-Dalsgaard (1992) studied the case of constant
temperature; we have generalized this result to the case of
propagating waves and standing waves in a polytropic model,
where the background varies slowly, which is more applicable
to the case of the lower solar photosphere. In the cases of
standing and propagating waves we see that a weak magnetic
field has a significant effect, leading to frequencies greater than
the Brunt—Viisild frequency. The Boussinesq approximation
was not applied in the analysis of Hasan & Christensen-
Dalsgaard (1992), hence this study gives a clearer picture of
IGWs in the lower solar atmosphere.

The application of this work is to atmospheric magnetic
buoyancy oscillations, that is, oscillations where buoyancy is
the primary restoring force but magnetic tension also has a
contribution. IGWs have been observed in the solar photo-
sphere and low atmosphere by, e.g., Stodilka (2008) and Straus
et al. (2008). A detailed study that observes the effect of a
magnetic field on IGWs has, to the authors’ knowledge, not yet
been undertaken. The theoretical results in this article may
prove important when such studies are carried out.

Given the capabilities of current solar telescopes, e.g., the
Solar Dynamics Observatory and the Interface Region Imaging
Spectrograph, longer observing times, together with good
spatial resolution, are possible. Observations of magnetoacous-
tic-gravity waves, excited in the solar interior or lower
atmosphere, propagating through the low solar atmosphere
into the chromosphere and corona, are highly expected. This is
a new and important avenue that solar physics may take in the
future. The theoretical results in this article may be useful for
shedding light on forthcoming observations of small-scale
oscillations.
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