29,336 research outputs found

    KH15D: a star eclipsed by a large scale dusty vortex?

    Full text link
    We propose that the large photometric variations of KH15D are due to an eclipsing swarm of solid particles trapped in giant gaseous vortex rotating at \~0.2 AU from the star. The efficiency of the capture-in-vortex mechanism easily explains the observed large optical depth. The weaker opacity at mid-eclipse is consistent with a size segregation of the particles toward the center of the vortex. This dusty structure must extend over ~1/3 of an orbit to account for the long eclipse duration. The estimated size of the trapped particles is found to range from 1 to 10cm, consistent with the gray extinction of the star. The observations of KH15D support the idea that giant vortices can grow in circumstellar disks and play a central role in planet formation.Comment: Accepted in ApJ Letters - 4 pages - 2 figure

    Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c

    Full text link
    Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure

    The Relativistic N-body Problem in a Separable Two-Body Basis

    Full text link
    We use Dirac's constraint dynamics to obtain a Hamiltonian formulation of the relativistic N-body problem in a separable two-body basis in which the particles interact pair-wise through scalar and vector interactions. The resultant N-body Hamiltonian is relativistically covariant. It can be easily separated in terms of the center-of-mass and the relative motion of any two-body subsystem. It can also be separated into an unperturbed Hamiltonian with a residual interaction. In a system of two-body composite particles, the solutions of the unperturbed Hamiltonian are relativistic two-body internal states, each of which can be obtained by solving a relativistic Schr\"odinger-like equation. The resultant two-body wave functions can be used as basis states to evaluate reaction matrix elements in the general N-body problem. We prove a relativistic version of the post-prior equivalence which guarantees a unique evaluation of the reaction matrix element, independent of the ways of separating the Hamiltonian into unperturbed and residual interactions. Since an arbitrary reaction matrix element involves composite particles in motion, we show explicitly how such matrix elements can be evaluated in terms of the wave functions of the composite particles and the relevant Lorentz transformations.Comment: 42 pages, 2 figures, in LaTe

    Infrared Surface Brightness Distances to Cepheids: a comparison of Bayesian and linear-bisector calculations

    Full text link
    We have compared the results of Bayesian statistical calculations and linear-bisector calculations for obtaining Cepheid distances and radii by the infrared surface brightness method. We analyzed a set of 38 Cepheids using a Bayesian Markov Chain Monte Carlo method that had been recently studied with a linear-bisector method. The distances obtained by the two techniques agree to 1.5 \pm 0.6% with the Bayesian distances being larger. The radii agree to 1.1% \pm 0.7% with the Bayesian determinations again being larger. We interpret this result as demonstrating that the two methods yield the same distances and radii. This implies that the short distance to the LMC found in recent linear-bisector studies of Cepheids is not caused by deficiencies in the mathematical treatment. However, the computed uncertainties in distance and radius for our dataset are larger in the Bayesian calculation by factors of 1.4-6.7. We give reasons to favor the Bayesian computations of the uncertainties. The larger uncertainties can have a significant impact upon interpretation of Cepheid distances and radii obtained from the infrared surface brightness method.Comment: 27 pages with 9 figure

    Stochastic models for atomic clocks

    Get PDF
    For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity

    Blockspin Cluster Algorithms for Quantum Spin Systems

    Full text link
    Cluster algorithms are developed for simulating quantum spin systems like the one- and two-dimensional Heisenberg ferro- and anti-ferromagnets. The corresponding two- and three-dimensional classical spin models with four-spin couplings are maped to blockspin models with two-blockspin interactions. Clusters of blockspins are updated collectively. The efficiency of the method is investigated in detail for one-dimensional spin chains. Then in most cases the new algorithms solve the problems of slowing down from which standard algorithms are suffering.Comment: 11 page
    • …
    corecore