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ABSTRACT 

Most workers i n  the f i e l d  o f  atomic clocks encounter 
frequency and time i n s t a b i l i t  
i zed (or model led) as random 
fluctuations t yp i ca l l y  display a 
which varies as a power-law over 
o f  (Fourier) frequencies (e. q. , 
denotes the normal i zed, i nstanta 
denotes the Fourier frequency). 
and/or clocks may have regions where one specif ic power- 
law predominates and other regions where other power-laws 
predominate. 
d i f f e ren t  power-laws seem t o  be adequate t o  describe 
almost a l l  observed random behavior i n  atomic clocks. 
The f i v e  types are: 

2 S (f) = h2fl 
Sy(f) = hlfo 
Sy(f) = h f -1 
Sy(f)  = holf_2 
$(f) = h,2f 

Typical osci 1 1 ators 

I n  general, various combinaticw of f i v e  

White phase modulation 
F1 i cker  phase modulation 
White frequency modulation 
F1 icker  frequency modulation 
Random Walk frequency modulation 

I n  addit ion t o  the random components, osc i l la to rs  and 
clocks often show systematjc, (i.e., deterministic) 
trends such as of fsets  i n  frequency and time, as well as 
l inear  d r i f t s  i n  frequency. 

For the atomic clocks used i n  the NBS Time Scales, an 
adequate model i s  the superposition o f  white FM, random 
walk FM, and l inear  frequency d r i f t  f o r  times longer than 
about one minute. The model has been tested on several 
clocks using maximum l ikel ihood techniques f o r  parameter 
estimation and the residuals have been "acceptably ran- 
dom. '' Convent? onal diagnostics i ndi cate tha t  add4 ti onal 
model elements contribute no s ign i f i can t  improvement t o  
the model even a t  the expense o f  the added model 
compl exi t y  . 

I. INTRODUCTION 

Many authors (1, 2, 3) have documented the fac t  tha t  most precision 
osc i l la to rs  and clocks exhib i t  both random and systematic variations i n  
t h e i r  output signals. The typ ica l  random parts may include white noise 
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phase modulat~on ( 
(FM), f l i c k e r  FM, 
usual ly adequate. I n  
d r i f t  i n  frequency, which i s  often d i f f i c u l t  t o  measure. 

Experimenters of ten diagnose the various noises using the  two-sample 
variance (or  "Al lan Variance") (4,s). On occasion, they w i l l  use an e s t i -  
mate o f  the power spectral density of, the frequency f luctuat ions (4, 5). 
O f  course, one cannot adequately observe the f luctuat lons o f  a s ing le 
c lock o r  o s c i l l a t o r  by i t s e l f  -- one must look a t  the di f ference between 
two clocks. The a l locat ion of noise levels t o  ind iv idual  clocks Pequires 
three o r  more clocks o f  comparable qual i ty.  This a l loca t ion  process does 
not always provide reasonable results. I n  fact ,  of ten the process y i e l d s  
negative values f o r  the variance -- an undesirable a r t i f a c t  o f  the estima- 
t i o n  procedure. 

The Al lan Variance i s  defined (1) as the i n f i n i t e  time average o f  
sample variances based on a sample s ize o f  only two adjacent values of 
frequency. That i s ,  

n 

where i s  the average frequency departure from nominal, averaged over 
the'  t i m e  i n te rva l  and divided by the nominal frequency. An equivalent 
form o f  Eq. (1) is :  

n 

where x(t> and y(t) are re la ted by 

and X ( t ) ,  the instantaneous time error,  i s  re la ted  t o  the phase er ro r  of 
the osc i l l a to r  by the re la t ion:  

(4) 

where $(t) i s  the phase er ro r  and vo i s  the nominal frequency (e.g., 
5MHZ). 
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i s  no f rom f i n i t e  data sets o f  the 
ti here 

Xn =: X(nto 

and the estimated Al lan Variance! i s  

N- 2 

F l  0 
where t = mTo. 

Although Eq. (6) i s  very close i n  form t o  the d e f i n i t i o n  o f  the Al lan 
Variance (see Eq. (l)), it i s  NOT an optimum estimator o f  the "true" A l lan 
Variance. That i s ,  there are other s t a t i s t i c a l  techniques which provide 
more precise estimates o f  the frequency va r iab i l i t y .  These improved 
techniques, however, are usually v a l i d  only f o r  very speci f ic  clock models. 
Fortunately, commerci a1 cesi um beam atomic c l  oc ks have been studi  ed exten- 
s ively,  and good models are w e l l  documented. 

11. Optimum Estimates 

I n  the introduction, we i d e n t i f i e d  two problems: 

A. S t a t i s t i c a l l y  i n e f f i c i e n t  estimators o f  the leve l  o f  o s c i l l a t o r  noises 

B. D i f f i c u l t i e s  i n  separating indiv idual  clock performances. 
and d r i f t ,  and 

While these two problems cannot be t o t a l l y  eliminated, they are amenable 
t o  optimal estimation techniques. That I s ,  we can minimize t h e i r  effects. 

The means o f  est imating these parameters has been developed by R.H. 
Jones and P.V. Tryon (6, 7). Basical ly, the technique i s  t h a t  o f  maximum 
1 i kel ihood estimation. The technique requires an ensemble o f  comparable 
clocks (M > 2) and time dif ference data between clocks covering a s i g n i f i -  
cant duration (e.g., a year). With the assumptions tha t  the perturbing 
noises are both independent and Gaussian, and t h a t  the basic model i s  
adequate, then it i s  possible t o  form the l i ke l ihood funct ion as a func- 
t i o n  o f  the o s c i l l a t o r  parameters. The l i ke l ihood funct ion i s  obtained 
from a Kalman F i l t e r  algorithm applied t o  the clock ensemble data. 

Using essentialy the same notat ion as used by Gelb (8), the clock model 
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and measurements can be e~pressed as follows: 

1 

1 

0 

0 
(7) 

where the subscripts on the matrices denote the recursion number 
(i.e., t ime). 

%l 2 o  
2 

rll 
O a  

0 O . . . )  
1 

0 O . . . )  

0 0 0  

( 1 0 -1 0 0 0 ...) 
( 1 
( 1 0 0 0 -1 0 ...) 

Y = (  1 
( . . . . . .  ...) 
( 1 
( . . . . . . .  . * * )  

(9) 

where the the number o f  clocks i s  M, the s tate vector, g, i s  a 2M column 
vector, @ and Q are 2M by 2M square matrices, and the  measurement ma- 
t r i x ,  y; i s  M - l  by ZM, since there are only M - 1  independent clock d i f -  
f erences . 

I n  matrix form the equations become: 

Xn + yn 
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The forecasts o f  Xn and zn t o  step n+1 based on data up t o  and including 
step n are: 

A A 

O f  in te res t  are the innovations a t  step n+l. The innovations are given 
A - by IY 

&+I  - Zn+l - hn+l 
with the covariance matrix yn+l 

where Po+ 
Append i f k fo r  a b r i e f  summary of the Kalman f i l t e r  relat ions). 

ates with zero mean, then the multivari!he pro&b i l i t y  d i s t r i bu t i on  can be 
wr i t t en  i n  the form 

i s  the er ro r  covariance matrix f o r  the s tate vector (see 

Assuming tha t  the dr iv ing  noises, E and q are normal random devi- 

The function, Q, given by -2 times the log  o f  the l i ke l ihood function, i s  
N N 

N 0  

Now, 2 i s  an i m p l i c i t  funct ion of the parameters a', because both the 
innovations and the error  covariance matrix, e-, are dependent on these 
moeel parameters. The estimation procedure f i & s  tha t  set  of parameters 
(0 Is) which minimizes 2 ( tha t  i s ,  maximqzes the l i ke l ihood function). 
Unfortunately, Q i s  a non-linear function o f  the parameters and must be 
calculated by a complete pass through the data f o r  each t r i a l  set o f  the 
2M parameters. For example, i f  one has M=10 clocks and d a i l y  t i m e  d i f f e r -  
ence data f o r  a year, then one has 365 x (M-1) = 3285 independent measure- 
ments and 2M = 20 parameters t o  adjust i n  order t o  maximize the l i ke l ihood 
function. There e x i s t  standard computer algorithms t o  perform such calcu- 
1 ations. 
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Three addi t ional  concerns are (a) the estimates o f  conf i  
f o r  the parameters, (b) the diagnostics t o  t e s t  the adequa 
model assumptions, and (c) the extension o f  the maximum l i ke l ihood e s t i -  
mates t o  include a frequency d r i f t  parameter f o r  each clock (9), 
model adequacy can be tested by tes t ing  o f  the residuals (Z,) f o r  "white- 
ness'' (i.e., randomness); and by comparing resu l ts  t o  more complex model 
assumptions. References 6,7 include a discussion o f  the methods used t o  
estimate the confidence in te rva ls  o f  the parameter estimates. 

in te rva l  s 

The 

111. Experimental Results 

For many years, the National Bureau o f  Standards (NBS) has accumulated 
large quant i t ies o f  clock comparison data on the commercial cesium clocks 
used i n  the NBS time scale. We used a recent sample o f  time comparisans 
on a dozen clocks over about two  months sampled every two hours. We also 
used another set  o f  d a i l y  data on seven clocks over a per iod o f  one year. 

The basic model assumption was tha t  o f  white FM noise p lus random walk 
FM noise plus l i n e a r  frequency d r i f t .  Thus, f o r  each clock i n  a data se t  
we estimated (T , (T , and D the d r i f t  parameter. Also estimated were the 
corresponding Eonf iqence in te rva l  s. The three parameters can be re1 ated 
t o  the more conventional A l lan Variance through the equation (see Appendix 
B): 

V L 

"%O 
6nt0 L 

Figure 1 displays p lo t s  o f  the Al lan variance obtained from the use o f  
Eq. 19, above and the estimated parameters. Figure 2 displays a cumula- 
t i v e  periodogram o f  residuals f o r  one of the clocks. A periodogram o f  
pure "white" noise would f a l l  w i th in  the boundaries shown 90% o f  the time. 
On the shorter data run, (- 2 mos.) l inear  frequency d r i f t  was not s ta t i s -  
t i c a l l y  s ign i f icant .  I n  fact ,  even on the longer run (1 year), on ly  
i n f a n t  clocks o r  older clocks approaching end o f  l i f e  showed s ign i f i can t  
d r i f t .  ( O f  course, the algori thm could only detect Pelat ive d r i f t s  be- 
tween clocks, not a common d r i f t  shared by a l l  clocks.) Tests were made 
using more complex models, but  any improvement was found to be s t a t i s t i c a l -  
l y  i ns i gni f i cant. 

I V .  Conclusions 

A viable c lock model f o r  commercial cesium beam clocks consists o f  
three elements: 

(1) White FM 
(2) Random walk FM 
(3) L i  near frequency d r i  f t  
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estimation techniques yield reasona results and 
s also. Conventional 1 to  adequate^ 

ly describe observed clock behavior. Further, the technique allows one to 
estimate the individual performance o f  each clock. As pointed out by 
Jones, one can avoid the problem of negative variances by using a log 
transformation, y = an(a2). 

tional Allan Variances. 
Equation 19 allows one to express the results in the form of conwen- 

The new NBS time scale algorithm (TA(NBS)) makes use of the parameter 
estimation routines covered in this paper. The technique is also used for 
NBS clock calibrations. 
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NS 

Model : 

Measurement : 

Forecast: 

Error Covariance: 

Kalman Gain: 

Error Covariance: 

State Update: 

h 

x = cp * 4- IJn -n 

2 = H X  + V  -n - -n -n 
h A 

x = cpx+ - - -n-1 

P -n + 9 

P * H ‘ * & * P  * t i ’  -n - -n - + 

P + =  P - K * H O P  -n -n -n - -n 
A A A 

X = X  + K  * [ & , , - H * X ]  -n -n -n -n - 
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uy 2 (mr,) = E 

n+2m 
[ - E  q i +  z 

i=n+l i=n+m+l I 2m2r02 

n+m 
= E  

2 Random Walk FM u (mTo)= u 
Y 

Linear Frequency Drift 
2 Xn = 4D(nto) 

A1 1 an Variance 

(Deterministic) 
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Composite: Assumes noises s t a t i s t i c a l  l y  independent. 

If the time error ,  Xn, i s  sampled from a continuous process, then* 

2 
2 u 2 ( m t o l  = -2 + sv +&(Dmto) 

2 u m t  

Y mtO 3tQ 

9t Private communi cat1 on C. Greenhall 
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The model which you say seems t o  f i t  most o f  our clocks contains random 
walk frequency, no f l i c k e r  frequency. Therefore, much much more pessi- 
m is t i c  view o f  the clocks than we have usual ly adopted, and I was wonder- 
i ng  i f  you could comment on, f o r  instance, what happens i f  you include a 
f l i c k e r  term, do the residuals get better, or, what i s  the reason for re- 
j ec t i ng  the f l i c k e r  frequency model? 

MR. BARNES: 

OK. Everybody -- I guess from my reputation, if anybody used f l i c k e r  
noise i t  would have been me, but, i f  you had had f l i c k e r  FM present, what 
would happen i n  these models would be tha t  the minimum value would move 
up and tend t o  have a f l a t t e r  region r i g h t  i n  the center i f  you r e a l l y  
had f l i cke r  noise. 

I can' t  go and say that, unequivocably, there i s  no f l i c k e r  noise i n  
these clocks, but, I can say tha t  if you looked a t  the residuals for the 
models without f l i c k e r  noise and then added f l i c k e r  noise, you would f i n d  
tha t  the improvement i n  the whiteness o f  the residuals was not s t a t i s t i -  
cal  l y  signif icant. 

A t  least, t ha t  i s  our experience i n  t h i s  data. 

We t r i e d  t o  t e s t  the model , t o  see i f  adding other noises would 
s iqn i f i can t l y  reduce the magnitude o f  the residual, and f o r  no other 
model d id  we-f ind 
not exist ,  but  i t  
it. 

s ign i f i can t  improvement. That doesn't mean tha t  i t  does 
does mean tha t  i n  t h i s  sample, we were unable t o  observe 

DR, W I N KL ER : 

I j u s t  want t o  take t h i s  beaut i fu l  opportunity t o  po int  out  that  your fre- 
quency standard i s  an excel lent  one f o r  long-term. 

MR. BARNES: 

I guess tha t ' s  what tha t  things says, and it doesn't have error  bars on 
t h i s  par t i cu la r  graph, but I would guess tha t  t h i s  i s  not surprising, be- 
cause the f a c t  t ha t  i t  i s  so bad i n  short-term, means tha t  i t  i s  harder 
t o  measure r e l i a b l y  the long-term performance, and hence, the confidence 
in terva ls  along the random walk frequency, are so broad tha t  i t  a1 lows 
i t  t o  almost look too good. And that, I suspect, i s  an a r t i f a c t  of any 
k ind o f  analysis. Thank you. 
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In  this case, I would have t o  say t h a t  our qualitative observations from 
many years indicate t h a t  this analysis is probably correct. 

DR. W I NKLER : 

Nevertheless, I t h i n k  tha t  i t  is important t o  note t h a t  one should not 
use short-term stability parameters for ra t ing of clocks long-term. 

MR. ALLAN: 

Johnson tried, independently, t o  assess the a b i l i t y  for the clock en- 
semble, and the assessment has been over a year period, and a year elaps- 
ed, and another year period, so there was a great deal of difference i n  
the stream of data -- and the parameters on this particular clock were 
the same, two t o t a l l y  independent years. 
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