4,669 research outputs found

    An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth-directed. Here we report a rare instance with comprehensive in situ and remote sensing observa- tions of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white light CME recon- struction. We find that the radio emission arises from the flanks of the CME, and are most likely associated with the CME-driven shock. Our work demon- strates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications

    Pulmonary vasoconstrictor action of KCNQ potassium channel blockers

    Get PDF
    KCNQ channels have been widely studied in the nervous system, heart and inner ear, where they have important physiological functions. Recent reports indicate that KCNQ channels may also be expressed in portal vein where they are suggested to influence spontaneous contractile activity. The biophysical properties of K+ currents mediated by KCNQ channels resemble a current underlying the resting K+ conductance and resting potential of pulmonary artery smooth muscle cells. We therefore investigated a possible role of KCNQ channels in regulating the function of pulmonary arteries by determining the ability of the selective KCNQ channel blockers, linopirdine and XE991, to promote pulmonary vasoconstriction. Linopirdine and XE991 both contracted rat and mouse pulmonary arteries but had little effect on mesenteric arteries. In each case the maximum contraction was almost as large as the response to 50 mM K+. Linopirdine had an EC50 of around 1 μM and XE991 was almost 10-fold more potent. Neither removal of the endothelium nor exposure to phentolamine or α,β-methylene ATP, to block α1-adrenoceptors or P2X receptors, respectively, affected the contraction. Contraction was abolished in Ca2+-free solution and in the presence of 1 μM nifedipine or 10 μM levcromakalim

    Rapid bidirectional reorganization of cortical microcircuits.

    Get PDF
    Mature neocortex adapts to altered sensory input by changing neural activity in cortical circuits. The underlying cellular mechanisms remain unclear. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to show reorganization in somatosensory cortex elicited by altered whisker sensory input. We found that there was rapid expansion followed by retraction of whisker cortical maps. The cellular basis for the reorganization in primary somatosensory cortex was investigated with paired electrophysiological recordings in the periphery of the expanded whisker representation. During map expansion, the chance of finding a monosynaptic connection between pairs of pyramidal neurons increased 3-fold. Despite the rapid increase in local excitatory connectivity, the average strength and synaptic dynamics did not change, which suggests that new excitatory connections rapidly acquire the properties of established excitatory connections. During map retraction, entire excitatory connections between pyramidal neurons were lost. In contrast, connectivity between pyramidal neurons and fast spiking interneurons was unchanged. Hence, the changes in local excitatory connectivity did not occur in all circuits involving pyramidal neurons. Our data show that pyramidal neurons are recruited to and eliminated from local excitatory networks over days. These findings suggest that the local excitatory connectome is dynamic in mature neocortex

    Terrestrial exposure of a fresh Martian meteorite causes rapid changes in hydrogen isotopes and water concentrations

    Get PDF
    Determining the hydrogen isotopic compositions and H2O contents of meteorites and their components is important for addressing key cosmochemical questions about the abundance and source(s) of water in planetary bodies. However, deconvolving the effects of terrestrial contamination from the indigenous hydrogen isotopic compositions of these extraterrestrial materials is not trivial, because chondrites and some achondrites show only small deviations from terrestrial values such that even minor contamination can mask the indigenous values. Here we assess the effects of terrestrial weathering and contamination on the hydrogen isotope ratios and H2O contents of meteoritic minerals through monitored terrestrial weathering of Tissint, a recent Martian fall. Our findings reveal the rapidity with which this weathering affects nominally anhydrous phases in extraterrestrial materials, which illustrates the necessity of sampling the interiors of even relatively fresh meteorite falls and underlines the importance of sample return missions

    Determination of an optimal dosing regimen for aspirin chemoprevention of 1,2-dimethylhydrazine-induced colon tumours in rats

    Get PDF
    In order to establish an optimal timing and duration of aspirin treatment in the chemoprevention of 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats, colon tumours were induced using an established protocol and aspirin was given in the diet at 500 p.p.m. during various stages of colon carcinogenesis. Results indicate that only aspirin treatment throughout the entire carcinogenic period significantly reduced tumour incidence and volume whereas intermittent aspirin dosing increased tumour number and/or volume, suggesting that aspirin must be used for an extended period in order to gain any chemopreventive benefit. © 1999 Cancer Research Campaig

    Generality of shear thickening in suspensions

    Full text link
    Suspensions are of wide interest and form the basis for many smart fluids. For most suspensions, the viscosity decreases with increasing shear rate, i.e. they shear thin. Few are reported to do the opposite, i.e. shear thicken, despite the longstanding expectation that shear thickening is a generic type of suspension behavior. Here we resolve this apparent contradiction. We demonstrate that shear thickening can be masked by a yield stress and can be recovered when the yield stress is decreased below a threshold. We show the generality of this argument and quantify the threshold in rheology experiments where we control yield stresses arising from a variety of sources, such as attractions from particle surface interactions, induced dipoles from applied electric and magnetic fields, as well as confinement of hard particles at high packing fractions. These findings open up possibilities for the design of smart suspensions that combine shear thickening with electro- or magnetorheological response.Comment: 11 pages, 9 figures, accepted for publication in Nature Material

    Innate immune signaling in hearts and buccal mucosa cells of patients with arrhythmogenic cardiomyopathy

    Get PDF
    Background: Nuclear factor κB (NF-κB) signaling in cardiac myocytes causes disease in a mouse model of arrhythmogenic cardiomyopathy (ACM) by mobilizing CCR2-expressing macrophages that promote myocardial injury and arrhythmias. Buccal mucosa cells exhibit pathologic features similar to those seen in cardiac myocytes in patients with ACM. Objectives: We sought to determine if persistent innate immune signaling via NF-κB occurs in cardiac myocytes in patients with ACM and if this is associated with myocardial infiltration of proinflammatory cells expressing CCR2. We also determined if buccal mucosa cells from young subjects with inherited disease alleles exhibit NF-κB signaling. Methods: We analyzed myocardium from ACM patients who died suddenly or required cardiac transplantation. We also analyzed buccal mucosa cells from young subjects with inherited disease alleles. The presence of immunoreactive signal for RelA/p65 in nuclei of cardiac myocytes and buccal cells was used as a reliable indicator of active NF-κB signaling. We also counted myocardial CCR2-expressing cells. Results: RelA/p65 signal was seen in numerous cardiac myocyte nuclei in 34 of 36 cases of ACM but not in 19 age-matched control individuals. Cells expressing CCR2 were increased in patient hearts in numbers directly correlated with the number of cardiac myocytes showing NF-κB signaling. NF-κB signaling was observed in buccal cells in young subjects with active disease. Conclusions: Patients with clinically active ACM exhibit persistent innate immune responses in cardiac myocytes and buccal mucosa cells, reflecting a local and systemic inflammatory process. Such individuals may benefit from anti-inflammatory therapy

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Persistent fluctuations in stride intervals under fractal auditory stimulation

    Get PDF
    Copyright @ 2014 Marmelat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.Commission of the European Community and the Netherlands Organisation for Scientific Research
    • …
    corecore