1,807 research outputs found

    Pooled Versus Individualized Load–Velocity Profiling in the Free-Weight Back Squat and Power Clean

    Get PDF
    Purpose: This study compared pooled against individualized load–velocity profiles (LVPs) in the free-weight back squat and power clean. Methods: A total of 10 competitive weightlifters completed baseline 1-repetition maximum assessments in the back squat and power clean. Three incremental LVPs were completed, separated by 48 to 72 hours. Mean and peak velocity were measured via a linear-position transducer (GymAware). Linear and nonlinear (second-order polynomial) regression models were applied to all pooled and individualized LVP data. A combination of coefficient of variation (CV), intraclass correlation coefficient, typical error of measurement, and limits of agreement assessed between-subject variability and within-subject reliability. Acceptable reliability was defined a priori as intraclass correlation coefficient > .7 and CV < 10%. Results: Very high to practically perfect inverse relationships were evident in the back squat (r = .83–.96) and power clean (r = .83–.89) for both regression models; however, stronger correlations were observed in the individualized LVPs for both exercises (r = .85–.99). Between-subject variability was moderate to large across all relative loads in the back squat (CV = 8.2%–27.8%) but smaller in the power clean (CV = 4.6%–8.5%). The power clean met our criteria for acceptable reliability across all relative loads; however, the back squat revealed large CVs in loads ≄90% of 1-repetition maximum (13.1%–20.5%). Conclusions: Evidently, load– velocity characteristics are highly individualized, with acceptable levels of reliability observed in the power clean but not in the back squat (≄90% of 1-repetition maximum). If practitioners want to adopt load–velocity profiling as part of their testing and monitoring procedures, an individualized LVP should be utilized over pooled LVPs

    Covariant perturbations of f(R) black holes: the Weyl terms

    Get PDF
    In this paper we revisit non-spherical perturbations of the Schwarzschild black hole in the context of f(R) gravity. Previous studies were able to demonstrate the stability of the f(R) Schwarzschild black hole against gravitational perturbations in both the even and odd parity sectors. In particular, it was seen that the Regge-Wheeler and Zerilli equations in f(R) gravity obey the same equations as their General Relativity counterparts. More recently, the 1+1+2 semi-tetrad formalism has been used to derive a set of two wave equations: one for transverse, trace-free (tensor) perturbations and one for the additional scalar modes that characterise fourth-order theories of gravitation. The master variable governing tensor perturbations was shown to be a modified Regge-Wheeler tensor obeying the same equation as in General Relativity. However, it is well known that there is a non-uniqueness in the definition of the master variable. In this paper we derive a set of two perturbation variables and their concomitant wave equations that describe gravitational perturbations in a covariant and gauge invariant manner. These variables can be related to the Newman-Penrose (NP) Weyl scalars as well as the master variables from the 2+2 formalism

    Gravitational Radiation from Rotational Instabilities in Compact Stellar Cores with Stiff Equations of State

    Get PDF
    We carry out 3-D numerical simulations of the dynamical instability in rapidly rotating stars initially modeled as polytropes with n = 1.5, 1.0, and 0.5. The calculations are done with a SPH code using Newtonian gravity, and the gravitational radiation is calculated in the quadrupole limit. All models develop the global m=2 bar mode, with mass and angular momentum being shed from the ends of the bar in two trailing spiral arms. The models then undergo successive episodes of core recontraction and spiral arm ejection, with the number of these episodes increasing as n decreases: this results in longer-lived gravitational wave signals for stiffer models. This instability may operate in a stellar core that has expended its nuclear fuel and is prevented from further collapse due to centrifugal forces. The actual values of the gravitational radiation amplitudes and frequencies depend sensitively on the radius of the star R_{eq} at which the instability develops.Comment: 39 pages, uses Latex 2.09. To be published in the Dec. 15, 1996 issue of Physical Review D. 21 figures (bitmapped). Originals available in compressed Postscript format at ftp://zonker.drexel.edu/papers/bars

    Gravitational Radiation from the Coalescence of Binary Neutron Stars: Effects Due to the Equation of State, Spin, and Mass Ratio

    Full text link
    We calculate the gravitational radiation produced by the coalescence of inspiraling binary neutron stars in the Newtonian regime using 3-dimensional numerical simulations. The stars are modeled as polytropes and start out in the point-mass regime at wide separation. The hydrodynamic integration is performed using smooth particle hydrodynamics (SPH) with Newtonian gravity, and the gravitational radiation is calculated using the quadrupole approximation. We have run a number of simulations varying the neutron star radii, equations of state, spins, and mass ratio. The resulting gravitational waveforms and spectra are rich in information about the hydrodynamics of coalescence, and show characteristic dependence on GM/Rc^2, the equation of state, and the mass ratio.Comment: 39 pages, uses Latex 2.09. To be published in the Dec. 15, 1996 issue of Physical Review D. 16 Figures (bitmapped). Originals available in compressed Postscript format at ftp://zonker.drexel.edu/papers/PAPER2

    Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies

    Get PDF
    Neutralizing antibody responses to coronaviruses mainly target the receptor-binding domain (RBD) of the trimeric spike. Here, we characterized polyclonal IgGs and Fabs from COVID-19 convalescent individuals for recognition of coronavirus spikes. Plasma IgGs differed in their focus on RBD epitopes, recognition of alpha- and beta-coronaviruses, and contributions of avidity to increased binding/neutralization of IgGs over Fabs. Using electron microscopy, we examined specificities of polyclonal plasma Fabs, revealing recognition of both S1^A and RBD epitopes on SARS-CoV-2 spike. Moreover, a 3.4Å cryo-EM structure of a neutralizing monoclonal Fab-spike complex revealed an epitope that blocks ACE2 receptor binding. Modeling based on these structures suggested different potentials for inter-spike crosslinking by IgGs on viruses and that characterized IgGs would not be affected by identified SARS-CoV-2 spike mutations. Overall, our studies structurally define a recurrent anti-SARS-CoV-2 antibody class derived from VH3-53/VH3-66 and similarity to a SARS-CoV VH3-30 antibody, providing criteria for evaluating vaccine-elicited antibodies

    Nonleptonic Λb\Lambda_b decays to Ds(2317)D_s(2317), Ds(2460)D_s(2460) and other final states in Factorization

    Full text link
    We consider nonleptonic Cabibbo--allowed Λb\Lambda_b decays in the factorization approximation. We calculate nonleptonic decays of the type Λb→ΛcP \Lambda_b \to \Lambda_c P and Λb→ΛcV \Lambda_b \to \Lambda_c V relative to Bˉd→D+P\bar{B}_d \to D^+ P and Bˉd→D+V\bar{B}_d \to D^+ V where we include among the pseudoscalar states(P) and the vector states(V) the newly discovered DsD_s resonances, Ds(2317)D_s(2317) and Ds(2460)D_s(2460). In the ratio of Λb\Lambda_b decays to Ds(2317)D_s(2317) and Ds(2460)D_s(2460) relative to the Bˉd\bar{B}_d decays to these states, the poorly known decay constants of Ds(2317)D_s(2317) and Ds(2460)D_s(2460) cancel leading to predictions that can shed light on the nature of these new states. In general, we predict the Λb\Lambda_b decays to be larger than the corresponding Bˉd\bar{B}_d decays and in particular we find the branching ratio for Λb→ΛcDs(2460)\Lambda_b \to \Lambda_c D_s(2460) can be between four to five times the branching ratio for Bˉd→D+Ds(2460)\bar{B}_d \to D^+ D_s(2460). This enhancement of Λb\Lambda_b branching ratios follows primarily from the fact that more partial waves contribute in Λb\Lambda_b decays than in Bˉd\bar{B}_d decays. Our predictions are largely independent of model calculations of hadronic inputs like form factors and decay constants.Comment: 16 pages LaTe

    Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors

    Get PDF
    Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change
    • 

    corecore