4,155 research outputs found

    Design and fabrication of plasmonic cavities for magneto-optical sensing (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.The dataset associated with this article is located in ORE at: http://hdl.handle.net/10871/32604The design and fabrication of a novel plasmonic cavity, intended to allow far-field recovery of signals arising from near field magneto-optical interactions, is presented. Finite element modeling is used to describe the interaction between a gold film, containing cross-shaped cavities, with a nearby magnetic under-layer. The modeling revealed strong electric field confinement near the center of the cross structure for certain optical wavelengths, which may be tuned by varying the length of the cross through a range that is compatible with available fabrication techniques. Furthermore, the magneto optical Kerr effect (MOKE) response of the composite structure can be enhanced with respect to that of the bare magnetic film. To confirm these findings, cavities were milled within gold films deposited upon a soluble film, allowing relocation to a ferromagnetic film using a float transfer technique. Cross cavity arrays were fabricated and characterized by optical transmission spectroscopy prior to floating, revealing resonances at optical wavelengths in good agreement with the finite element modeling. Following transfer to the magnetic film, circular test apertures within the gold film yielded clear magneto-optical signals even for diameters within the sub-wavelength regime. However, no magneto-optical signal was observed for the cross cavity arrays, since the FIB milling process was found to produce nanotube structures within the soluble under-layer that adhered to the gold. Further optimization of the fabrication process should allow recovery of magneto-optical signal from cross cavity structures.Financial support from the UK Engineering and Physical Science Research Council (EPSRC) grants EP/1038470/I and EP/1038411/1 is gratefully acknowledged. We also acknowledge the support of Seagate Technology (Ireland) under SOW 00077300.0. RMB contribution to project was supported by the Royal Academy of Engineering under the Research Chairs and Senior Research Fellowships Scheme

    "My Children and I Will no Longer Suffer from Malaria": A Qualitative Study of the Acceptance and Rejection of Indoor Residual Spraying to Prevent Malaria in Tanzania.

    Get PDF
    The objective of this study was to identify attitudes and misconceptions related to acceptance or refusal of indoor residual spraying (IRS) in Tanzania for both the general population and among certain groups (e.g., farmers, fishermen, community leaders, and women). This study was a series of qualitative, semi-structured, in-depth interviews and focus group discussions conducted from October 2010 to March 2011 on Mainland Tanzania and Zanzibar. Three groups of participants were targeted: acceptors of IRS (those who have already had their homes sprayed), refusers (those whose communities have been sprayed, but refused to have their individual home sprayed), and those whose houses were about to be sprayed as part of IRS scale-up. Interviews were also conducted with farmers, fishermen, women, community leaders and members of non-government organizations responsible for community mobilization around IRS. Results showed refusers are a very small percentage of the population. They tend to be more knowledgeable people such as teachers, drivers, extension workers, and other civil servants who do not simply follow the orders of the local government or the sprayers, but are skeptical about the process until they see true results. Refusal took three forms: 1) refusing partially until thorough explanation is provided; 2) accepting spray to be done in a few rooms only; and 3) refusing outright. In most of the refusal interviews, refusers justified why their houses were not sprayed, often without admitting that they had refused. Reasons for refusal included initial ignorance about the reasons for IRS, uncertainty about its effectiveness, increased prevalence of other insects, potential physical side effects, odour, rumours about the chemical affecting fertility, embarrassment about moving poor quality possessions out of the house, and belief that the spray was politically motivated. To increase IRS acceptance, participants recommended more emphasis on providing thorough public education, ensuring the sprayers themselves are more knowledgeable about IRS, and asking that community leaders encourage participation by their constituents rather than threatening punishment for noncompliance. While there are several rumours and misconceptions concerning IRS in Tanzania, acceptance is very high and continues to increase as positive results become apparent

    Nonhospice Palliative Care Within the Treatment of End‐Stage Liver Disease

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155544/1/hep31226.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155544/2/hep31226_am.pd

    Lysine supply is a critical factor in achieving sustainable global protein economy

    Get PDF
    Production of animal-based protein is a significant global source of greenhouse gases, a major driver of agricultural land use and a source of nutrient loss to the environment. In this study, we provide a new assessment of the current sources of proteins in the human diet and analyze the options for increasing the use of plant-based sources, taking the protein quality, as indicated by the amino acid composition, into account. The results demonstrate the importance of sustainable global supply of lysine, one of the amino acids essential for human nutrition. It is demonstrated here that the current production of plant-based lysine that can be considered as replacement of lysine obtained from animal protein largely comes from soybean originating from a small number of countries. There are limited large scale options to broaden the supply of plant-based lysine, namely increase of soya production outsides its current main production areas, increase of production of legumes other than soya, obtaining plant-based lysine from sources not currently used for human consumption, or manufacturing lysine from non-standard plant-based sources (e.g. through fermentation from sugar). All of these options would require major changes in the structure of global agricultural production and associated agri-food systems and would have especially consequences on agricultural land use

    Preliminary Limits on the WIMP-Nucleon Cross Section from the Cryogenic Dark Matter Search (CDMS)

    Get PDF
    We are conducting an experiment to search for WIMPs, or weakly-interacting massive particles, in the galactic halo using terrestrial detectors. This generic class of hypothetical particles, whose properties are similar to those predicted by extensions of the standard model of particle physics, could comprise the cold component of non-baryonic dark matter. We describe our experiment, which is based on cooled germanium and silicon detectors in a shielded low-background cryostat. The detectors achieve a high degree of background rejection through the simultaneous measurement of the energy in phonons and ionization. Using exposures on the order of one kilogram-day from initial runs of our experiment, we have achieved (preliminary) upper limits on the WIMP-nucleon cross section that are comparable to much longer runs of other experiments.Comment: 5 LaTex pages, 5 eps figs, epsf.sty, espcrc2dsa2.sty. Proceedings of TAUP97, Gran Sasso, Italy, 7-11 Sep 1997, Nucl. Phys. Suppl., A. Bottino, A. di Credico and P. Monacelli (eds.). See also http://cfpa.berkeley.ed

    Optically pumped magnetoencephalography in epilepsy

    Get PDF
    We demonstrate the first use of Optically Pumped Magnetoencephalography (OP-MEG) in an epilepsy patient with unrestricted head movement. Current clinical MEG uses a traditional SQUID system, where sensors are cryogenically cooled and housed in a helmet in which the patient's head is fixed. Here, we use a different type of sensor (OPM), which operates at room temperature and can be placed directly on the patient's scalp, permitting free head movement. We performed OP-MEG recording in a patient with refractory focal epilepsy. OP-MEG-identified analogous interictal activity to scalp EEG, and source localized this activity to an appropriate brain region

    Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography

    Get PDF
    One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms
    corecore